Responses of brain and behavior to changing day-length in the diurnal grass rat (Arvicanthis niloticus).

نویسندگان

  • G Leach
  • C Ramanathan
  • J Langel
  • L Yan
چکیده

Seasonal affective disorder (SAD) is a major depressive disorder that recurs in the fall and winter when day-length gets short. It is well accepted that day-length is encoded by the principal circadian clock located in the suprachiasmatic nucleus (SCN), but very little is known about day-length encoding in diurnal mammals. The present study utilized the grass rat, Arvicanthis niloticus, to investigate how the circadian system responds to photoperiodic changes in a diurnal mammal that shows day-length-dependent mood changes. The animals were initially housed in equatorial day-length (12h, EP) followed by either long (16h, LP) or short (8h, SP) photoperiods. The LP animals showed an expansion of the peak phase of the PER1 and PER2 rhythm in the SCN as well as an extended behavioral active phase. In contrast, the SP animals did not show any compression of their active phase nor a change in the peak duration of PER1 or PER2 expression, compared to those in EP. The results suggest that the circadian system in the diurnal grass rats is less responsive when day-length gets short compared to when it gets longer. The depression-like behaviors were assessed using sweet solution preference (SSP) and forced swimming test (FST). Animals in the SP group showed decreased SSP and increased immobility time in FST as compared to the EP group, suggesting a depressive phenotype. The present study serves as the first step toward exploring the role that the circadian system plays in SAD using a diurnal rodent model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus).

Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturna...

متن کامل

Nocturnal and diurnal rhythms in the unstriped Nile rat, Arvicanthis niloticus.

In a laboratory population of unstriped Nile grass rats, Arvicanthis niloticus, individuals with two distinctly different patterns of wheel-running exist. One is diurnal and the other is relatively nocturnal. In the first experiment, the authors found that these patterns are strongly influenced by parentage and by sex. Specifically, offspring of two nocturnal parents were significantly more lik...

متن کامل

The electroretinogram (ERG) of a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus)

The most widespread models to study blindness, rats and mice, have retinas containing less than 3% cones. The diurnal rodent Arvicanthis niloticus retina has around 35% cones. Using ERG recordings, we studied retina function in this species. Several features differed from that reported in rats and mice: (a) fivefold larger photopic a-wave amplitudes; (b) photopic hill effect in Nile grass rats ...

متن کامل

Tyrosine hydroxylase positive neurons and their contacts with vasoactive intestinal polypeptide-containing fibers in the hypothalamus of the diurnal murid rodent, Arvicanthis niloticus.

Diurnal and nocturnal animals differ with respect to the timing of a host of behavioral and physiological events including those associated with neuroendocrine functions, but the neural bases of these differences are poorly understood. In nocturnal species, rhythms in tyrosine hydroxylase-containing (TH+) neurons in the hypothalamus appear to be responsible for rhythms in prolactin secretion. H...

متن کامل

Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species.

In this study we examine the size of primary sensory areas in the neocortex and the cellular composition of area 17/V1 in three rodent groups: laboratory nocturnal Norway rats (Long-Evans; Rattus norvegicus), wild-caught nocturnal Norway rats (R. norvegicus), and laboratory diurnal Nile grass rats (Arvicanthis niloticus). Specifically, we used areal measures of myeloarchitecture of the primary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2013