Off-line and On-line Tuning: A Study on Operator Selection for a Memetic Algorithm Applied to the QAP

نویسندگان

  • Gianpiero Francesca
  • Paola Pellegrini
  • Thomas Stützle
  • Mauro Birattari
چکیده

Tuning methods for selecting appropriate parameter configurations of optimization algorithms have been the object of several recent studies. The selection of the appropriate configuration may strongly impact on the performance of evolutionary algorithms. In this paper, we study the performance of three memetic algorithms for the quadratic assignment problem when their parameters are tuned either off-line or on-line. Off-line tuning selects a priori one configuration to be used throughout the whole run for all the instances to be tackled. On-line tuning selects the configuration during the solution process, adapting parameter settings on an instance-per-instance basis, and possibly to each phase of the search. The results suggest that off-line tuning achieves a better performance than on-line tuning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Companion to Off-line and On-line Tuning: A Study on Operator Selection for a Memetic Algorithm Applied to the QAP

In the paper [1] we study the performance of three memetic algorithms when their configuration is tuned either off-line or on-line. We assess the relative performance achieved by algorithms of different quality tuned either off-line or on-line. We tackle the quadratic assignment problem. The results suggest that off-line tuning achieves in general better performance than on-line tuning. On-line...

متن کامل

Genetic and Memetic Algorithms for Sequencing a New JIT Mixed-Model Assembly Line

This paper presents a new mathematical programming model for the bi-criteria mixed-model assembly line balancing problem in a just-in-time (JIT) production system. There is a set of criteria to judge sequences of the product mix in terms of the effective utilization of the system. The primary goal of this model is to minimize the setup cost and the stoppage assembly line cost, simultaneously. B...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm

For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011