Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR.
نویسندگان
چکیده
Pseudomonas aeruginosa exhibits swarming motility on semisolid surfaces (0.5 to 0.7% agar). Swarming is a more than just a form of locomotion and represents a complex adaptation resulting in changes in virulence gene expression and antibiotic resistance. In this study, we used a comprehensive P. aeruginosa PA14 transposon mutant library to investigate how the complex swarming adaptation process is regulated. A total of 233 P. aeruginosa PA14 transposon mutants were verified to have alterations in swarming motility. The swarming-associated genes functioned not only in flagellar or type IV pilus biosynthesis but also in processes as diverse as transport, secretion, and metabolism. Thirty-three swarming-deficient and two hyperswarming mutants had transposon insertions in transcriptional regulator genes, including genes encoding two-component sensors and response regulators; 27 of these insertions were newly identified. Of the 25 regulatory mutants whose swarming motility was highly impaired (79 to 97%), only 1 (a PA1458 mutant) had a major defect in swimming, suggesting that this regulator might influence flagellar synthesis or function. Twitching motility, which requires type IV pili, was strongly affected in only two regulatory mutants (pilH and PA2571 mutants) and was moderately affected in three other mutants (algR, ntrB, and nosR mutants). Microarray analyses were performed to compare the gene expression profile of a swarming-deficient PA3587 mutant to that of the wild-type PA14 strain under swarming conditions. PA3587 showed 63% homology to metR, which encodes a regulator of methionine biosynthesis in Escherichia coli. The observed dysregulation in the metR mutant of nine different genes required for swarming motility provided a possible explanation for the swarming-deficient phenotype of this mutant.
منابع مشابه
Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids
Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...
متن کاملPhosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa.
We investigated the transcriptional responses of Pseudomonas aeruginosa under phosphate-deficient (0.2 mM) conditions compared to phosphate sufficiency (1 mM). This elicited enormous transcriptional changes in genes related to phosphate acquisition, quorum sensing, chemotaxis, toxin secretion, and regulation. This dysregulation also led to increased virulence-associated phenotypes, including sw...
متن کاملDetermination antimicrobial resistance profile of Pseudomonas aeruginosa strains isolated from hospitalized patients in Taleghani Hospital (Ahvaz, Iran) from 2011-2012
Background & Objective: Pseudomonas aeruginosa is a rod-shaped, Gram-negative, glucose-nonfermenting aerobic bacterium. It is widespread in natural environments and it is an opportunistic pathogen for humans that can lead to a broad spectrum of disease such as urinary, burn, respiratory infections, and septicemia. The aim of this study was to determe antibiotic resistance profile of P. aerugino...
متن کاملInterconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa
Besides being a major opportunistic human pathogen, Pseudomonas aeruginosa can be found in a wide range of environments. This versatility is linked to complex regulation, which is achieved through the action of transcriptional regulators, and post-transcriptional regulation by intracellular proteases including Lon. Indeed, lon mutants in this species show defects in motility, biofilm formation,...
متن کاملManuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes.
OBJECTIVES Manuka honey is a broad-spectrum antimicrobial agent that seems to affect different bacteria in many different ways. It has been shown to be bactericidal against Pseudomonas aeruginosa by destabilizing the cell wall, but we aimed to investigate whether there were further intracellular target sites. METHODS In this study inhibitory effects of manuka honey on P. aeruginosa were inves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 18 شماره
صفحات -
تاریخ انتشار 2009