Algebraic Tools for the Analysis of State Space Models
نویسندگان
چکیده
We present algebraic techniques to analyze state space models in the areas of structural identifiability, observability, and indistinguishability. While the emphasis is on surveying existing algebraic tools for studying ODE systems, we also present a variety of new results. In particular: On structural identifiability, we present a method using linear algebra to find identifiable functions of the parameters of a model for unidentifiable models. On observability, we present techniques using Gröbner bases and algebraic matroids to test algebraic observability of state space models. On indistinguishability, we present a sufficient condition for distinguishability using computational algebra and demonstrate testing indistinguishability.
منابع مشابه
Reachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملAn extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملComputation of a compact state space model for an adaptive spindle head configuration with piezo actuators using balanced truncation
Finite element models of machine tools or their building blocks are usually very large and thus do not allow for fast simulation or application in controller design. Especially when algebraic constraints come into play the models become differential algebraic equations and therefore are even more difficult to handle in the application. In this contribution we propose a method based on modern sy...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کامل