Retinoic acid inhibits interleukin-4-induced eotaxin production in a human bronchial epithelial cell line.
نویسندگان
چکیده
Retinoic acid (RA) is known to accelerate wound healing and induce cell differentiation. All-trans RA (ATRA) exerts its effect by binding retinoic acid receptors, which are members of the nuclear receptor family. We investigated whether RA can alter expression of eotaxin, a potent eosinophil chemoattractant that is regulated by the transcription factors signal transducer and activator of transcription 6 (STAT6) and NF-kappaB. We examined the effects of RA on eotaxin expression in a human bronchial epithelial cell line BEAS-2B. ATRA and its stereodimer 9-cis retinoic acid (9-cis RA) inhibited IL-4-induced release of eotaxin at 10(-6) M by 78.0 and 52.0%, respectively (P < 0.05). ATRA and 9-cis RA also significantly inhibited IL-4-induced eotaxin mRNA expression at 10(-6) M by 52.3 and 53.5%, respectively (P < 0.05). In contrast, neither ATRA nor 9-cis RA had any effects on TNF-alpha-induced eotaxin production. In transfection studies using eotaxin promoter luciferase plasmids, the inhibitory effect of ATRA on IL-4-induced eotaxin production was confirmed at the transcriptional level. Interestingly, ATRA had no effects on IL-4-induced tyrosine phosphorylation, nuclear translocation, or DNA binding activity of STAT6. Activating protein-1 was not involved in ATRA-mediated transrepression of eotaxin with IL-4 stimulation. The mechanism of the inhibitory effect of ATRA on IL-4-induced eotaxin production in human bronchial epithelial cells has not been elucidated but does not appear to be due to an effect on STAT6 activation. These findings raise the possibility that RA may reduce eosinophilic airway inflammation, one of the prominent pathological features of allergic diseases such as bronchial asthma.
منابع مشابه
dsRNA enhances eotaxin-3 production through interleukin-4 receptor upregulation in airway epithelial cells.
The exacerbation of asthma during viral infections is mainly explained by neutrophils infiltrating into the airways. However, enhanced functions of eosinophils are also observed. The aim of this study was to reveal the mechanism of how eosinophils are activated during and after viral infection of the airways, using a model of viral infection. A synthetic double-stranded RNA, poly inosinic-cytid...
متن کاملUpregulation of interleukin-4 receptor by interferon-gamma: enhanced interleukin-4-induced eotaxin-3 production in airway epithelium.
Airway epithelial cells produce a number of chemokines, including eotaxins. Among the three known eotaxins, T helper (Th) type 2 cytokines have been observed to induce the expression of eotaxin-3 mRNA. This study investigated the effect of interferon (IFN)-gamma, a Th1 cytokine, on Th2 cytokine-induced eotaxin-3 production in a bronchial epithelial cell line, BEAS-2B. BEAS-2B cells produced eot...
متن کاملRetinoic acid inhibits elastase-induced injury in human lung epithelial cell lines.
The protective effects of retinoic acid on elastase-induced lung epithelial cell injury were studied using elastase extracted from purulent human sputum, the BEAS-2B human bronchial epithelial cell line, A549 human type II lung cell line, and primary cultures of human tracheal epithelial cells. Elastase decreased viability of BEAS-2B cells, A549 cells, and human tracheal epithelial cells in con...
متن کاملDifferential regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid budesonide.
Airway epithelial cells are a rich source of eosinophil-selective C-C chemokines. We investigated whether cytokines and the topical glucocorticoid budesonide differentially regulate RANTES, monocyte chemoattractant protein-4 (MCP-4), and eotaxin mRNA and protein expression in the human bronchial epithelial cell line BEAS-2B and in primary human bronchial epithelial cells by Northern blot analys...
متن کاملPDE4 inhibitors have no effect on eotaxin expression in human primary bronchial epithelial cells.
The bronchial epithelium is a very important factor during the inflammatory response, it produces many key regulators involved in the pathophysiology of asthma and COPD. Local influx of eosinophils, basophils, Th2 lymphocytes and macrophages is the source of many cytotoxic proteins, cytokines and other mediators of inflammation. These cells are attracted by eotaxins (eotaxin-1/CCL11, eotaxin-2/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004