Role of membrane potential in calcium signaling during rhythmic bursting in tritonia swim interneurons.

نویسندگان

  • Evan S Hill
  • Paul S Katz
چکیده

Rhythmic bursting in neurons is accompanied by dynamic changes in intracellular Ca(2+) concentration. These Ca(2+) signals may be caused by membrane potential changes during bursting and/or by synaptic inputs. We determined that membrane potential is responsible for most, if not all, of the cytoplasmic Ca(2+) signal recorded during rhythmic bursting in two neurons of the escape swim central pattern generator (CPG) of the mollusk, Tritonia diomedea: ventral swim interneuron B (VSI) and cerebral neuron 2 (C2). Ca(2+) signals were imaged with a confocal laser scanning microscope while the membrane potential was recorded at the soma. During the swim motor pattern (SMP), Ca(2+) signals in both neurons transiently increased during each burst of action potentials with a more rapid decay in secondary than in primary neurites. VSI and C2 were then voltage-clamped at the soma, and each neuron's own membrane potential waveform recorded during the SMP was played back as the voltage command. In all regions of VSI, this completely reproduced the amplitude and time course of Ca(2+) signals observed during the SMP, but in C2, the amplitude was lower in the playback experiments than during the SMP, possibly due to space clamp problems. Therefore in VSI, the cytoplasmic Ca(2+) signal during the SMP can be accounted for by its membrane potential excursions, whereas in C2 the membrane potential excursions can account for most of the SMP Ca(2+) signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cycle Period of a Network Oscillator is Independent of Membrane Potential and Spiking Activity in Individual Central Pattern Generator Neurons

Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altere...

متن کامل

Optical Recording of the Tritonia Swimming Central Pattern Generator

We recorded action potential activity from the isolated brain of the nudibranch seaslug Tritonia diomedea during fictive swimming. Candidate central pattern generator (CPG) interneurons were identified by their bursting patterns and positions in the brain. Previously identifed populations of interneurons were imaged, including the dorsal swim interneurons (DSI), C2, and ventral swim interneuron...

متن کامل

Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons.

Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altere...

متن کامل

Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia.

This research examines the mechanisms that initiate rhythmic activity in the episodic central pattern generator (CPG) underlying escape swimming in the gastropod mollusk Tritonia diomedea. Activation of the network is triggered by extrinsic excitatory input but also accompanied by intrinsic neuromodulation and the recruitment of additional excitation into the circuit. To examine how these facto...

متن کامل

G protein signaling in a neuronal network is necessary for rhythmic motor pattern production.

G protein-coupled receptors are widely recognized as playing important roles in mediating the actions of extrinsic neuromodulatory inputs to motor networks. However, the potential for their direct involvement in rhythmic motor pattern generation has received considerably less attention. Results from this study indicate that G protein signaling appears to be integral to the operation of the cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 3  شماره 

صفحات  -

تاریخ انتشار 2007