Surface crystallization of supercooled water in clouds.

نویسندگان

  • A Tabazadeh
  • Y S Djikaev
  • H Reiss
چکیده

The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 degrees C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 degrees C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Imaging of Freezing Drops: No Preference for Nucleation at the Contact Line

S metastable liquids are ubiquitous but eventually nucleate the thermodynamically stable solid phase. Whether the nucleation occurs with the help of a foreign substance (heterogeneous nucleation) or without it (homogeneous nucleation), uniform probability of cluster formation is typically assumed, scaling with surface area and volume, respectively. Recently, however, the volume scaling for homo...

متن کامل

Evaporation freezing by contact nucleation inside-out

[1] Ice formation in atmospheric clouds is crucial to our understanding of precipitation and cloud radiative properties. In recent work it was shown that heterogeneous ice nucleation rates can be strongly enhanced by a form of surface crystallization (Shaw et al., 2005). Here we present new laboratory data and consider the implications for contact nucleation and its relevance to ice nucleation ...

متن کامل

Surface-induced crystallization in supercooled tetrahedral liquids.

Surfaces have long been known to have an intricate role in solid-liquid phase transformations. Whereas melting is often observed to originate at surfaces, freezing usually starts in the bulk, and only a few systems have been reported to exhibit signatures of surface-induced crystallization. These include assembly of chain-like molecules, some liquid metals and alloys and silicate glasses. Here,...

متن کامل

Experimental evidence of low-density liquid water upon rapid decompression

Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-press...

متن کامل

Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar

In part I it was demonstrated that supercooled liquid-water clouds can occur in the form of thin but radiatively signiŽ cant layers that are distinctive in lidar imagery due to their high backscatter coefŽ cient. In this paper, 18 months of near-continuous lidar data from two midlatitude locations are analysed to estimate the frequency of occurrence of such clouds as a function of temperature. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 25  شماره 

صفحات  -

تاریخ انتشار 2002