SENP1 protects against myocardial ischaemia/reperfusion injury via a HIF1α-dependent pathway.

نویسندگان

  • Jianmin Gu
  • Yuqi Fan
  • Xiaobing Liu
  • Lihuang Zhou
  • Jinke Cheng
  • Rong Cai
  • Song Xue
چکیده

AIMS SUMO-specific protease 1 (SENP1) removes SUMO from proteins and plays important roles in the regulation of multiple cellular signalling pathways. However, little is known about the role of SENP1 in coronary heart disease. In this study, we tested the hypothesis that SENP1 protects against myocardial ischaemia/reperfusion (I/R) injury and investigated the underlying molecular mechanisms involved. METHODS AND RESULTS First, we found that SENP1 levels increased after I/R in human and mouse myocardium in vivo and in rat cardiomyocytes in vitro. We then performed coronary artery ligation to induce I/R injury in wild-type (WT) and heterozygous SENP1-knockdown (SENP1(+/-)) mice. Compared with WT mice, SENP1(+/-) mice had normal cardiac function at baseline but lower systolic function after I/R. Post-I/R myocardial infarction sizes were larger in SENP1(+/-) mice. Furthermore, we demonstrated that SENP1 regulates the expression of hypoxia-inducible factor 1 α (HIF1α), a critical protective factor during I/R, in vivo and in vitro. Overexpression of HIF1α reversed the deteriorating effect of SENP1 knockdown on cellular death. CONCLUSION Our results suggest that SENP1 deficiency exacerbates I/R injury in cardiomyocytes via a HIF1α-dependent pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The endothelin-1 receptor antagonist bosentan protects against ischaemia/reperfusion-induced endothelial dysfunction in humans.

Endothelial dysfunction may contribute to the extent of ischaemia/reperfusion injury. ET (endothelin)-1 receptor antagonism protects against myocardial ischaemia/reperfusion injury in animal models. The present study investigated whether oral administration of an ET(A)/ET(B) receptor antagonist protects against ischaemia/reperfusion-induced endothelial dysfunction in humans. FBF (forearm blood ...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Activation of G protein‐coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy

BACKGROUND AND PURPOSE Recent evidence indicates that GPER (G protein-coupled oestrogen receptor 1) mediates acute pre-ischaemic oestrogen-induced protection of the myocardium from ischaemia/reperfusion injury via a signalling cascade that includes PKC translocation, ERK1/2/ GSK-3β phosphorylation and inhibition of the mitochondrial permeability transition pore (mPTP) opening. Here, we investig...

متن کامل

Adiponectin protects against myocardial ischaemia-reperfusion injury via AMP-activated protein kinase, Akt, and nitric oxide.

AIMS Cardiovascular disease and type 2 diabetes mellitus are associated with low plasma concentration of adiponectin. The aim of this study was to investigate whether adiponectin exerts cardioprotective effects during myocardial ischaemia-reperfusion and whether this effect is related to the production of nitric oxide (NO). METHODS AND RESULTS Isolated rat hearts were subjected to 30 min of e...

متن کامل

The role of PTEN in cardioprotection against ischaemia-reperfusion injury

Activation of the PI3K/AKT pathway protects the heart from ischaemia-reperfusion injury. Phosphatase and Tensin Homolog deleted on Chromosome10 (PTEN) is a negative regulator of this pathway. The hypothesis on which this thesis was based stated that inhibition of PTEN would confer protection against ischaemia-reperfusion injury. PTEN was reduced using: 1) a PTEN inhibitor, bpV(HOpic), 2) a mous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2014