Genetic Mapping by Bulk Segregant Analysis in Drosophila: Experimental Design and Simulation-Based Inference

نویسنده

  • John E Pool
چکیده

Identifying the genomic regions that underlie complex phenotypic variation is a key challenge in modern biology. Many approaches to quantitative trait locus mapping in animal and plant species suffer from limited power and genomic resolution. Here, I investigate whether bulk segregant analysis (BSA), which has been successfully applied for yeast, may have utility in the genomic era for trait mapping in Drosophila (and other organisms that can be experimentally bred in similar numbers). I perform simulations to investigate the statistical signal of a quantitative trait locus (QTL) in a wide range of BSA and introgression mapping (IM) experiments. BSA consistently provides more accurate mapping signals than IM (in addition to allowing the mapping of multiple traits from the same experimental population). The performance of BSA and IM is maximized by having multiple independent crosses, more generations of interbreeding, larger numbers of breeding individuals, and greater genotyping effort, but is less affected by the proportion of individuals selected for phenotypic extreme pools. I also introduce a prototype analysis method for simulation-based inference for BSA mapping (SIBSAM). This method identifies significant QTL and estimates their genomic confidence intervals and relative effect sizes. Importantly, it also tests whether overlapping peaks should be considered as two distinct QTL. This approach will facilitate improved trait mapping in Drosophila and other species for which hundreds or thousands of offspring (but not millions) can be studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variable Genetic Architecture of Melanic Evolution in Drosophila melanogaster

Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping met...

متن کامل

The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing

We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-read sequencing. Our proposed approach is based on a smoothed version of the standard G statistic, and takes into account variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced during the sequencing of bulks. Using s...

متن کامل

Next-generation mapping of complex traits with phenotype-based selection and introgression.

Finding the genes underlying complex traits is difficult. We show that new sequencing technology combined with traditional genetic techniques can efficiently identify genetic regions underlying a complex and quantitative behavioral trait. As a proof of concept we used phenotype-based introgression to backcross loci that control innate food preference in Drosophila simulans into the genomic back...

متن کامل

Two flavors of bulk segregant analysis in yeast.

Genetic mapping methods typically rely upon genotyping many individuals in a mapping population. In contrast, bulk segregant analysis looks for biases in genotype in phenotyped pools of segregants. For relatively strong and genetically simple traits, it can be a fast, inexpensive approach. Although it is technically possible to use many genotyping platforms, microarray-based methods are conveni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2016