mark, a novel maternal gene encoding a localized factor in the ascidian embryo
نویسندگان
چکیده
Ascidian embryogenesis is regarded as a typical ‘mosaic’ type. Recent studies have provided convincing evidence that components of the posterior-vegetal cytoplasm of fertilized eggs are responsible for establishment of the anteroposterior axis of the embryo. We report here isolation and characterization of a novel maternal gene, posterior end mark (pem). After fertilization, the pem transcript is concentrated in the posterior-vegetal cytoplasm of the egg and later marks the posterior end of developing ascidian embryos. Despite its conspicuous localization pattern, the predicted PEM protein shows no significant homology to known proteins. Overexpression of this gene by microinjection of synthesized pem mRNA into fertilized eggs results in development of tadpole larvae with deficiency of the anteriormost adhesive organ, dorsal brain and sensory pigment-cells. Lineage tracing analysis revealed that the anterior epidermis and dorsal neuronal cells were translocated posteriorly into the tail region, suggesting that this gene plays a role in establishment of anterior and dorsal patterning of the embryo. The ascidian tadpole is regarded as a prototype of vertebrates, implying a similar function of pem in vertebrate embryogenesis.
منابع مشابه
Posterior end mark, a novel maternal gene encoding a localized factor in the ascidian embryo.
Ascidian embryogenesis is regarded as a typical 'mosaic' type. Recent studies have provided convincing evidence that components of the posterior-vegetal cytoplasm of fertilized eggs are responsible for establishment of the anteroposterior axis of the embryo. We report here isolation and characterization of a novel maternal gene, posterior end mark (pem). After fertilization, the pem transcript ...
متن کاملLocalized PEM mRNA and Protein Are Involved in Cleavage-Plane Orientation and Unequal Cell Divisions in Ascidians
BACKGROUND Orientation and positioning of the cell division plane are essential for generation of invariant cleavage patterns and for unequal cell divisions during development. Precise control of the division plane is important for appropriate partitioning of localized factors, spatial arrangement of cells for proper intercellular interactions, and size control of daughter cells. Ascidian embry...
متن کاملCorrection: A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo
Maternal factors initiate the zygotic developmental program in animal embryos. In embryos of the chordate, Ciona intestinalis, three maternal factors-Gata.a, β-catenin, and Zic-r.a-are required to establish three domains of gene expression at the 16-cell stage; the animal hemisphere, vegetal hemisphere, and posterior vegetal domains. Here, we show how the maternal factors establish these domain...
متن کاملMaternal mRNA encoding the orphan steroid receptor SpCOUP-TF is localized in sea urchin eggs.
The SpCOUP-TF gene is a highly conserved sea urchin homologue of the vertebrate COUP-TFs and the Drosophila seven up subfamily of transcription factors, which are members of the orphan steroid hormone receptors. Whole-mount in situ hybridization experiments, using three sea urchin species, detect the maternal SpCOUP-TF mRNA deposited unevenly in the oocytes, mature eggs and the blastomeres of t...
متن کاملTemporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis.
For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecu...
متن کامل