Occupational exposure to volatile organic compounds and aldehydes in the U.S. trucking industry.
نویسندگان
چکیده
Diesel exhaust is a complex chemical mixture that has been linked to lung cancer mortality in a number of epidemiologic studies. However, the dose-response relationship remains largely undefined, and the specific components responsible for carcinogenicity have not been identified. Although previous focus has been on the particulate phase, diesel exhaust includes a vapor phase of numerous volatile organic compounds (VOCs) and aldehydes that are either known or suspected carcinogens, such as 1,3-butadiene, benzene, and formaldehyde. However, there are relatively few studies that quantify exposure to VOCs and aldehydes in diesel-heavy and other exhaust-related microenvironments. As part of a nationwide assessment of exposure to diesel exhaust in the trucking industry, we collected measurements of VOCs and aldehydes at 15 different U.S. trucking terminals and in city truck drivers (with 6 repeat site visits), observing average shift concentrations in truck cabs and at multiple background and work area locations within each terminal. In this paper, we characterize occupational exposure to 18 different VOCs and aldehydes, as well as relationships with particulate mass (elemental carbon in PM < 1 microm and PM2.5) across locations to determine source characteristics. Our results show that occupational exposure to VOCs and aldehydes varies significantly across the different sampling locations within each terminal, with significantly higher exposures noted in the work environments over background levels (p < 0.01). A structural equation model performed well in predicting terminal exposures to VOCs and aldehydes as a function of job, background levels, weather conditions, proximity to a major road, and geographic location (R2 = 0.2-0.4 work area; R2 = 0.5-0.9 background).
منابع مشابه
A Retrospective Assessment of Occupational Exposure to Elemental Carbon in the U.S. Trucking Industry
BACKGROUND Despite considerable epidemiologic evidence about the health effects of chronic exposure to vehicle exhaust, efforts at defining the extent of risk have been limited by the lack of historical exposure measurements suitable for use in epidemiologic studies and for risk assessment. OBJECTIVES We sought to reconstruct exposure to elemental carbon (EC), a marker of diesel and other veh...
متن کاملRecent Advances in Microextraction Methods for Sampling and Analysis of Volatile Organic Compounds in Air: A Review
Human exposures to volatile organic compounds (VOCs) are associated with a wide range of health problems. Due to these adverse effects of VOCs on the human health, determination of trace levels of VOCs is very important for accurate assessment of indoor and outdoor exposure. Solid phase microextraction (SPME), needle trap device (NTD) and hollow fiber- liquid phase microextraction (HF-LPME) are...
متن کاملMunicipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds.
AIMS To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). METHODS Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were ...
متن کاملCenter for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.
Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygie...
متن کاملتجزیه آلکانها و آلدئیدهای درونزاد در هوای بازدم شاغلین در مواجهه با غبار حاوی سیلیس
Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 41 20 شماره
صفحات -
تاریخ انتشار 2007