The three operators of the lac operon cooperate in repression.

نویسندگان

  • S Oehler
  • E R Eismann
  • H Krämer
  • B Müller-Hill
چکیده

We tested the effect of systematic destruction of all three lac operators of the chromosomal lac operon of Escherichia coli on repression by Lac repressor. Absence of just one 'pseudo-operator' O2 or O3 decreases repression by wild-type tetrameric Lac repressor approximately 2- to 3-fold; absence of both 'pseudo-operators' decreases repression greater than 50-fold. O1 alone represses under these conditions only approximately 20-fold. Dimeric active Lac repressor (iadi) represses the wild-type lac operon to about the same low extent. This indicates that cooperative interaction between lac operators is due to DNA loop formation mediated by tetrameric Lac repressor. Under conditions where loop formation is impossible, occupation of O3 but not of O2 may lead to weak repression. This suggests that under these conditions CAP activation may be inhibited and that stopping transcription at O2 does not significantly contribute to repression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of DNA looping on the induction kinetics of the lac operon.

The induction of the lac operon follows cooperative kinetics. The first mechanistic model of these kinetics is the de facto standard in the modeling literature [Yagil, G., Yagil, E., 1971. On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11-17]. Yet, subsequent studies have shown that the model is based on incorrect assumptions. Specifical...

متن کامل

DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli

Escherichia coli lac repressor (LacI) is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. This tetrameric protein specifically binds to the O1, O2 and O3 operators of the lac operon and forms a DNA loop to repress transcription from the adjacent lac promoter. In this article, we demonstrate that upon binding to the O1 and O2 operators at their nati...

متن کامل

Mechanism of promoter repression by Lac repressor–DNA loops

The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor d...

متن کامل

Efficiency and versatility of distal multisite transcription regulation

Transcription regulation typically involves the binding of proteins over long distances on multiple DNA sites that are brought close to each other by the formation of DNA loops. The inherent complexity of the assembly of regulatory complexes on looped DNA challenges the understanding of even the simplest genetic systems, including the prototypical lac operon. Here we implement a scalable quanti...

متن کامل

Control of gal transcription through DNA looping: inhibition of the initial transcribing complex.

Involvement of DNA looping between two spatially separated gal operators, OE and OI, in repression of the gal operon has been demonstrated in vivo. An in vitro transcription assay using a minicircle DNA containing the gal promoter region with lac operators was employed to elucidate the molecular mechanism of repression. Wild-type lac repressors (LacI+ protein molecules), which are capable of as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1990