Genetic learning of the membership functions for mining fuzzy association rules from low quality data
نویسندگان
چکیده
Many methods have been proposed to mine fuzzy association rules from databases with crisp values in order to help decision-makers make good decisions and tackle new types of problems. However, most real-world problems present a certain degree of imprecision. Various studies have been proposed to mine fuzzy association rules from imprecise data but they assume that the membership functions are known in advance and it is not an easy task to know a priori the most appropriate fuzzy sets to cover the domains of the variables. In this paper, we propose FARLAT-LQD, a new fuzzy data-mining algorithm to obtain both suitable membership functions and useful fuzzy association rules from databases with a wide range of types of uncertain data. To accomplish this, first we perform a genetic learning of the membership functions based on the 3-tuples linguistic representation model to reduce the search space and to learn the most adequate context for each fuzzy partition, maximizing the fuzzy supports and the interpretability measure GM3M in order to preserve the semantic interpretability of the obtained membership functions. Moreover, we propose a new algorithm based on the Fuzzy Frequent Pattern-growth algorithm, called FFP-growth-LQD, to efficiently mine the fuzzy association rules from inaccurate data considering the learned membership functions in the genetic process. The results obtained over 3 databases of different sizes and kinds of imprecisions demonstrate the effectiveness of the proposed algorithm. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملLearning the membership function contexts for mining fuzzy association rules by using genetic algorithms
Different studies have proposedmethods formining fuzzy association rules fromquantitative data, where themembership functions were assumed to be known in advance. However, it is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for mining fuzzy association rules. This paper thus presents a new fuzzy data-mining algorithm for extr...
متن کاملAn improved approach to find membership functions and multiple minimum supports in fuzzy data mining
Fuzzy mining approaches have recently been discussed for deriving fuzzy knowledge. Since items may have their own characteristics, different minimum supports and membership functions may be specified for different items. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting minimum supports and membership functions for items from quantitative transactions. In that paper,...
متن کاملGenetic-PSO Fuzzy Data Mining With Divide and Conquer Strategy
Nowadays, discovery the association rules is an important and controversial area in data mining research studies. These rules, describe noticeable association relationships among different attributes. While most studies have focused on binary valued transaction data, in real world applications, there data usually consist of quantitative values. With that in mind, in this paper, we propose a fuz...
متن کاملA GA-based Fuzzy Mining Approach to Achieve a Trade-off Between Number of Rules and Suitability of Membership Functions
Data mining is most commonly used in attempts to induce association rules from transaction data. Transactions in real-world applications, however, usually consist of quantitative values. This paper thus proposes a fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions. We present a GA-based framework for finding membership funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 295 شماره
صفحات -
تاریخ انتشار 2015