Coexistence of topological Dirac fermions on the surface and three-dimensional Dirac cone state in the bulk of ZrTe5 single crystal
نویسندگان
چکیده
Although, the long-standing debate on the resistivity anomaly in ZrTe5 somewhat comes to an end, the exact topological nature of the electronic band structure remains elusive till today. Theoretical calculations predicted that bulk ZrTe5 to be either a weak or a strong three-dimensional (3D) topological insulator. However, the angle resolved photoemission spectroscopy and transport measurements clearly demonstrate 3D Dirac cone state with a small mass gap between the valence band and conduction band in the bulk. From the magnetization and magneto-transport measurements on ZrTe5 single crystal, we have detected both the signature of helical spin texture from topological surface state and chiral anomaly associated with the 3D Dirac cone state in the bulk. This implies that ZrTe5 hosts a novel electronic phase of material, having massless Dirac fermionic excitation in its bulk gap state, unlike earlier reported 3D topological insulators. Apart from the band topology, it is also apparent from the resistivity and Hall measurements that the anomalous peak in the resistivity can be shifted to a much lower temperature (T < 2 K) by controlling impurity and defects.
منابع مشابه
Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5.
Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to the topologically nontrivial nature of 3D Tis, has rarely been investigated by experiments. Besides, 3D massive Dirac ...
متن کاملThree-dimensional topological photonic crystal with a single surface Dirac cone
A single Dirac cone on the surface is the hallmark of three-dimensional (3D) topological insulators, where the double degeneracy at the Dirac point is protected by time-reversal symmetry and the spin-splitting away from the point is provided by the spin-orbital coupling. Here we predict a single Dirac-cone surface state in a 3D photonic crystal, where the degeneracy at the Dirac point is protec...
متن کاملAharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires.
Three-dimensional Dirac semimetals, three-dimensional analogues of graphene, are unusual quantum materials with massless Dirac fermions, which can be further converted to Weyl fermions by breaking time reversal or inversion symmetry. Topological surface states with Fermi arcs are predicted on the surface and have been observed by angle-resolved photoemission spectroscopy experiments. Although t...
متن کاملExperimental realization of a three-dimensional topological insulator, Bi2Te3.
Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be ...
متن کاملCreation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions.
Topological insulators are a unique class of materials characterized by a Dirac cone state of helical Dirac fermions in the middle of a bulk gap. When the thickness of a three-dimensional topological insulator is reduced, however, the interaction between opposing surface states opens a gap that removes the helical Dirac cone, converting the material back to a normal system of ordinary fermions....
متن کامل