Buoyancy Arrest and Bottom Ekman Transport. Part I: Steady Flow

نویسندگان

  • K. H. BRINK
  • S. J. LENTZ
چکیده

It is well known that along-isobath flow above a sloping bottom gives rise to cross-isobath Ekman transport and therefore sets up horizontal density gradients if the ocean is stratified. These transports in turn eventually bring the along-isobath bottom velocity, hence bottom stress, to rest (‘‘buoyancy arrest’’) simply by means of the thermal wind shear. This problem is revisited here. A modified expression for Ekman transport is rationalized, and general expressions for buoyancy arrest time scales are presented. Theory and numerical calculations are used to define a new formula for boundary layer thickness for the case of downslope Ekman transport, where a thick, weakly stratified arrested boundary layer results. For upslope Ekman transport, where advection leads to enhanced stability, expressions are derived for both the weakly sloping (in the sense of slope Burger number s 5 aN/f, where a is the bottom slope, N is the interior buoyancy frequency, and f is the Coriolis parameter) case where a capped boundary layer evolves and the larger s case where a nearly linearly stratified boundary layer joins smoothly to the interior density profile. Consistent estimates for the buoyancy arrest time scale are found for each case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and Nonlinear Stratified Spindown over Sloping Topography

In a stratified rotating fluid, frictionally driven circulations couple with the buoyancy field over sloping topography. Analytical and numerical methods are used to quantify the impact of this coupling on the vertical circulation, spindown of geostrophic flows, and the formation of a shelfbreak jet. Over a stratified. slope, linear spindown of a geostrophic along-isobath flow induces cross-iso...

متن کامل

Stratification Effects in a Bottom Ekman Layer

A stratified bottom Ekman layer over a nonsloping, rough surface is studied using a three-dimensional unsteady large eddy simulation to examine the effects of an outer layer stratification on the boundary layer structure. When the flow field is initialized with a linear temperature profile, a three-layer structure develops with a mixed layer near the wall separated from a uniformly stratified o...

متن کامل

Time-Dependent Ventilated Thermocline

In this thesis, I study the time-varying behavior of a ventilated thermocline with basin scales at annual and decadal time scales. The variability is forced by three external forcings: the wind stress (chapter 3), the surface heat flux (chapter 4) and the upwelling along the eastern boundary (chapter 5). It is found that the thermocline variability is forced mainly by wind in a shadow zone whil...

متن کامل

Internal gravity waves generated by a turbulent bottom Ekman layer

Internal gravity waves excited by the turbulent motions in a bottom Ekman layer are examined using large-eddy simulation. The outer flow is steady and uniformly stratified while the density gradient is set to zero at the flat lower wall. After initializing with a linear density profile, a mixed layer forms near the wall separated from the ambient stratification by a pycnocline. Two types of int...

متن کامل

The Dynamic Role of Ridges in a #-plane

In this thesis, the dynamic role of bottom topography in a #3-plane channel is systematically studied in both linear homogeneous and stratified layer models in the presence of either wind stress (Chapters 2, 3, 4, and 6) or buoyancy forcing (Chapter 5). In these studies, the structure of the geostrophic contour plays a fundamental role, and the role of bottom topography is looked at from two di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010