Subunit Composition and Organization of the Vacuolar H-ATPase from Oat Roots.
نویسندگان
چکیده
The vacuolar H(+)-translocating ATPase (H(+)-ATPase), originally reported to consist of three major subunits, has been further purified from oat roots (Avena sativa var Lang) to determine the complete subunit composition. Triton-solubilized ATPase activity was purified by gel filtration on Sephacryl S400 and ion-exchange chromatography (Q-Sepharose). ATP hydrolysis activity of purified preparations was inhibited by 100 nanomolar bafilomycin A(1), a specific vacuolar-type ATPase inhibitor. The purified oat H(+)-ATPase (relative molecular weight = 650,000) was composed of polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. To analyze the organization of the H(+)-ATPase subunits, native vacuolar membranes were treated with KI and MgATP to dissociate peripheral proteins. Release of 70, 60, 44, 42, 36, and 29 kilodalton polypeptides from the membrane was accompanied by a loss of ATP hydrolysis and ATP-dependent H(+)-pumping activities. Five of the peripheral subunits were released from the membrane as a large complex of 540 kilodaltons. Vesicles that had lost the peripheral sector of the ATPase could hold a pH gradient generated by the proton-translocating pyrophosphatase, suggesting that the integral sector of the ATPase did not form a H(+)-conducting pathway. Negative staining of native vesicles revealed knob-like structures of 10 to 12 nanometers in dense patches on the surface of vacuolar membranes. These structures were removed by MgATP and KI, which suggested that they were the peripheral sectors of the H(+)-ATPase. These results demonstrate that the vacuolar H(+)-ATPase from oat roots has 10 different subunits. The oat vacuolar ATPase is organized as a large peripheral sector and an integral sector with a subunit composition similar, although not identical to, other eukaryotic vacuolar ATPases. Variations in subunit composition observed among several ATPases support the idea that distinct types of vacuolar H(+)-ATPases exist in plants.
منابع مشابه
VACUOLAR-TYPE H+-TRANSLOCATING ATPases IN PLANT ENDOMEMBRANES: SUBUNIT ORGANIZATION AND MULTIGENE FAMILIES.
Acidification of endomembrane compartments by the vacuolar-type H+-translocating ATPase (V-ATPase) is vital to the growth and development of plants. The V-ATPase purified from oat roots is a large complex of 650x10(3 )Mr that contains 10 different subunits of 70, 60, 44, 42, 36, 32, 29, 16, 13 and 12x10(3 )Mr. This set of ten polypeptides is sufficient to couple ATP hydrolysis to proton pumping...
متن کاملThe Tonoplast H + - ATPase of Acer pseudoplatanus 1 s a Vacuolar - Type ATPase That Operates with a
The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95,66,56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis fhaliana. T...
متن کاملEnhanced Expression of Vacuolar H+-ATPase Subunit E in the Roots Is Associated with the Adaptation of Broussonetia papyrifera to Salt Stress
Vacuolar H(+)-ATPase (V-H(+)-ATPase) may play a pivotal role in maintenance of ion homeostasis inside plant cells. In the present study, the expression of V-H(+)-ATPase genes was analyzed in the roots and leaves of a woody plant, Broussonetia papyrifera, which was stressed with 50, 100 and 150 mM NaCl. Moreover, the expression and distribution of the subunit E protein were investigated by Weste...
متن کاملEffect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley.
Two cDNA clones encoding vacuolar H+-inorganic pyrophosphatase (HVP1 and HVP10), one clone encoding the catalytic subunit (68 kDa) of vacuolar H+-ATPase (HvVHA-A), and one clone encoding vacuolar Na+/H+ antiporter (HvNHX1) were isolated from barley (Hordeum vulgare), a salt-tolerant crop. Salt stress increased the transcript levels of HVP1, HVP10, HvVHA-A, and HvNHX1, and osmotic stress also in...
متن کاملTwo cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barley roots.
The vacuolar H+-ATPase of higher plants is a member of the V-ATPase family, which comprises complex, multisubunit ATPases found in a11 eukaryotes. The electrochemical gradient created by the V-ATPase is thought to provide the driving force for the iecondary transport of other ions and metabolites (Taiz, 1992). In barley (Hordeum vulgare L.) roots this enzyme may be involved in the sequestration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 99 1 شماره
صفحات -
تاریخ انتشار 1992