Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982-2009

نویسندگان

  • Jiafu Mao
  • Xiaoying Shi
  • Peter E. Thornton
  • Forrest M. Hoffman
  • Zaichun Zhu
  • Ranga B. Myneni
چکیده

Using a recent Leaf Area Index (LAI) dataset and the Community Land Model version 4 (CLM4), we investigated percent changes and controlling factors of global vegetation growth for the period 1982 to 2009. Over that 28-year period, both the remote-sensing estimate and model simulation show a significant increasing trend in annual vegetation growth. Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend. Heterogeneous precipitation functioned to decrease this latitudinal LAI gradient, and considerably regulated the local LAI change. A series of factorial experiments were specially-designed to isolate and quantify contributions to LAI trend from different external forcings such as climate variation, CO2, nitrogen deposition and land use and land cover change. The climate-only simulation confirms that climate change, particularly the asymmetry of land temperature variation, can explain the latitudinal pattern of LAI change. CO2 fertilization during the last three decades was simulated to be the dominant cause for the enhanced vegetation growth. Our study, though limited by observational and modeling uncertainties, adds further insight into vegetation growth trends and environmental OPEN ACCESS Remote Sens. 2013, 5 1485 correlations. These validation exercises also provide new quantitative and objective metrics for evaluation of land ecosystem process models at multiple spatio-temporal scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attribution of seasonal leaf area index trends in the northern latitudes with "optimally" integrated ecosystem models.

Significant increases in remotely sensed vegetation indices in the northern latitudes since the 1980s have been detected and attributed at annual and growing season scales. However, we presently lack a systematic understanding of how vegetation responds to asymmetric seasonal environmental changes. In this study, we first investigated trends in the seasonal mean leaf area index (LAI) at norther...

متن کامل

The altitude-for-latitude disparity in the range retractions of woody species.

Increasing temperatures are driving rapid upward range shifts of species in mountains. An altitudinal range retreat of 10 m is predicted to translate into a approximately 10-km latitudinal retreat based on the rate at which temperatures decline with increasing altitude and latitude, yet reports of latitudinal range retractions are sparse. Here, we examine potential climatic, biological, anthrop...

متن کامل

Spatio-Temporal Changes in Vegetation Activity and Its Driving Factors during the Growing Season in China from 1982 to 2011

Using National Oceanographic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) and Climatic Research Unit (CRU) climate datasets, we analyzed interannual trends in the growing-season Normalized Difference Vegetation Index (NDVI) in China from 1982 to 2011, as well as the effects of climatic variables and human activities on vegetation variation. Growing-season...

متن کامل

Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors

Changes in vegetation activity are driven by multiple natural and anthropogenic factors, which can be reflected by Normalized Difference Vegetation Index (NDVI) derived from satellites. In this paper, NDVI trends from 1982 to 2012 are first estimated by the Theil–Sen median slope method to explore their spatial and temporal patterns. Then, the impact of climate variables and human activity on t...

متن کامل

Exploring Long Term Spatial Vegetation Trends in Taiwan from AVHRR NDVI3g Dataset Using RDA and HCA Analyses

Due to 4000 m elevation variation with temperature differences equivalent to 50 degrees of latitudinal gradient, exploring Taiwan’s spatial vegetation trends is valuable in terms of diverse ecosystems and climatic types covering a relatively small island with an area of 36,000 km2. This study analyzed Taiwan’s spatial vegetation trends with controlling environmental variables through redundancy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013