Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films
نویسندگان
چکیده
Thin film selenide glasses have emerged as an important material for integrated photonics due to its high refractive index, mid-IR transparency and high non-linear optical indices. We prepared high-quality As2Se3 glass films using spin coating from ethylenediamine solutions. The physio-chemical properties of the films are characterized as a function of annealing conditions. Compared to bulk glasses, as-deposited films possess a distinctively different network structure due to presence of Se-Se homopolar bonds and residual solvent. Annealing partially recovers the As-Se3 pyramid structure and brings the film refractive indices close to the bulk value. Optical loss in the films measured at 1550 nm wavelength is 9 dB/cm, which was attributed to N-H bond absorption from residual solvent. ©2012 Optical Society of America OCIS codes: (160.2750) Glass and other amorphous materials; (310.3840) Materials and process characterization; (240.0310) Thin films; (310.1860) Deposition and fabrication; (230.7370) Waveguides. References and links 1. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. NonCryst. Solids 330(1-3), 1–12 (2003). 2. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999). 3. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3(2), 142–148 (1997). 4. K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. Mater. Electron. 16(10), 633–643 (2005). 5. P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006). 6. L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008). 7. J. J. Hu, “Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy,” Opt. Express 18(21), 22174–22186 (2010). 8. H. T. Lin, Z. Yi, and J. J. Hu, “Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design,” Opt. Lett. 37(8), 1304–1306 (2012). 9. J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOScompatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007). 10. V. I. Mikla and V. V. Mikla, “Effect of thermal evaporation conditions on structural changes in amorphous AsxS1-x films,” J. Optoelectron. Adv. Mater. Rapid Commun. 1(6), 272–276 (2007). 11. V. Nazabal, F. Charpentier, J. L. Adam, P. Nemec, H. Lhermite, M. L. Brandily-Anne, J. Charrier, J. P. Guin, and A. Moreac, “Sputtering and pulsed laser deposition for nearand mid-infrared applications: a comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011). #173384 $15.00 USD Received 30 Jul 2012; revised 15 Oct 2012; accepted 3 Nov 2012; published 6 Nov 2012 (C) 2012 OSA 1 December 2012 / Vol. 2, No. 12 / OPTICAL MATERIALS EXPRESS 1723 12. M. Krbal, T. Wagner, T. Kohoutek, P. Nemec, J. Orava, and M. Frumar, “The comparison of Ag-As33S67 films prepared by thermal evaporation (TE), spin-coating (SC) and a pulsed laser deposition (PLD),” J. Phys. Chem. Solids 68(5-6), 953–957 (2007). 13. M. Erazú, J. Rocca, M. Fontana, A. Urena, B. Arcondo, and A. Pradel, “Raman spectroscopy of chalcogenide thin films prepared by PLD,” J. Alloy. Comp. 495(2), 642–645 (2010). 14. J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011). 15. G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982). 16. T. Kohoutek, T. Wagner, J. Orava, M. Krbal, A. Fejfar, T. Mates, S. O. Kasap, and M. Frumar, “Surface morphology of spin-coated As-S-Se chalcogenide thin films,” J. Non-Cryst. Solids 353(13-15), 1437–1440 (2007). 17. S. S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009). 18. C. Tsay, Y. L. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode midinfrared waveguides,” Opt. Express 18(25), 26744–26753 (2010). 19. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35(20), 3324–3326 (2010). 20. T. Kohoutek, T. Wágner, M. Vlček, M. Vlček, and M. Frumar, “Physico-chemical properties of spin-coated AgAs-Sb-S films,” J. Non-Cryst. Solids 351(27-29), 2205–2209 (2005). 21. T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys. 103(6), 063511 (2008). 22. T. Kohoutek, T. Wagner, J. Orava, M. Frumar, V. Perina, A. Mackova, V. Hnatowitz, M. Vlcek, and S. Kasap, “Amorphous films of Ag-As-S system prepared by spin-coating technique, preparation techniques and films physico-chemical properties,” Vacuum 76(2-3), 191–194 (2004). 23. S. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010). 24. T. Kohoutek, T. Wágner, M. Vlček, M. Vlček, and M. Frumar, “Spin-coated As33S67-xSex thin films: the effect of annealing on structure and optical properties,” J. Non-Cryst. Solids 352(9-20), 1563–1566 (2006). 25. S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films 261(1-2), 263–265 (1995). 26. T. Guiton and C. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater. 1(5), 558– 563 (1989). 27. M. A. Popescu, Non-Crystalline Chalcogenicides (Kluwer Academic Publishers, 2001). 28. M. Waldmann, J. D. Musgraves, K. Richardson, and C. B. Arnold, “Structural properties of solution processed Ge23Sb7S70 glass materials,” J. Mater. Chem. 22(34), 17848–17852 (2012). 29. R. J. Nemanich, G. A. N. Connell, T. M. Hayes, and R. A. Street, “Thermally induced effects in evaporated chalcogenide films. 1. structure,” Phys. Rev. B 18(12), 6900–6914 (1978). 30. J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater. 30(10), 1560–1566 (2008). 31. W. Y. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005). 32. V. Kovanda, M. Vlcek, and H. Jain, “Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy,” J. Non-Cryst. Solids 326-327, 88–92 (2003). 33. NIST, “Ethylenediamine,” retrieved 7/15/2012, http://webbook.nist.gov/cgi/cbook.cgi?Name=ethylenediamine&Units=SI. 34. R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983). 35. N. Carlie, N. C. Anheier, Jr., H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the nearand mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011). 36. R. P. Wang, S. J. Madden, C. J. Zha, A. V. Rode, and B. Luther-Davies, “Annealing induced phase transformations in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). 37. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solutionprocessed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
منابع مشابه
Optical properties of spin-coated Er-doped Ga1As39S60 Chalcogenide thin films
Spin-coating of Chalcogenide glasses is a cost-effective and flexible method to produce thin films applicable in photonics. In this paper Er was doped into Ga1As39S60 glass by melt quenching technique and solutions for spin coating were prepared from glass powders dissolved in Propylamine and Ethylendiamine. Substrates used were microscopic slides (refractive index of about 1.51). Applied layer...
متن کاملInfluence of annealing conditions on the optical and structural properties of spin-coated As(2)S(3) chalcogenide glass thin films.
Spin-coating of chalcogenide glass is a low-cost, scalable method to create optical grade thin films, which are ideal for visible and infrared applications. In this paper, we study the influence of annealing on optical parameters of As(2)S(3) films by examining UV-visible and infrared spectroscopy and correlating the results to changes in the physical properties associated with solvent removal....
متن کاملSTUDY OF ANNEALING TEMPERATURE VARIATION ON THE STRUCTURAL PROPERTIES OF DIP-COATED TiO2-SiO2 NANOSTRUCTURED FILMS
Abstract:In the present research, SiO2–TiO2 nanostructure films were successfully prepared on windshields using the sol–gel technique for photocatalytic applications. To prevent the thermal diffusion of the sodium ions from the glass to TiO2 films, the SiO2 layer was pre-coated on the glass by the sol–gel method. The substrates were dipped in the sol and withdrawn with the speed of 6cm/min-1 to...
متن کاملTHE RELAXATION OF PHOTODARKENING IN Sn DOPED AMORPHOUS As2Se3 FILMS
Photodarkening relaxation under light exposure of a-As2Se3 amorphous films doped with 0.5-5.0 at.% Sn was studied for its dependence on the concentration of impurities and thermal treatment. Both factors reduce photodarkening with the degree of reduction dependent on the concentration of impurity. The relaxation process may be described by a stretched exponential with the dispersion parameter 0...
متن کاملEffects of Cobalt Doping on Optical Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating Technique
Cobalt (Co) doped Zinc Oxide (ZnO) thin films, containing different amountof Cobalt nanoparticles as the Co doping source, deposited by the sol–gel spin coatingmethod onto glass via annealing temperature at 400˚C, have been investigated by opticalcharacterization method. The effect of Co incorporation on the surface morphology wasclearly observed from scanning electron microscopy (SEM) images. ...
متن کامل