Facial Expression Recognition Using a Dynamic Model and Motion Energy
نویسندگان
چکیده
Previous efforts at facial expression recognition have been based on the Facial Action Coding System (FACS), a representation developed in order to allow human psychologists to code expression from static facial “mugshots.” In this paper we develop new, more accurate representations for facial expression by building a video database of facial expressions and then probabilistically characterizing the facial muscle activation associated with each expression using a detailed physical model of the skin and muscles. This produces a muscle-based representation of facial motion, which is then used to recognize facial expressions in two different ways. The first method uses the physics-based model directly, by recognizing expressions through comparison of estimated muscle activations. The second method uses the physics-based model to generate spatio-temporal motion-energy templates of the whole face for each different expression. These simple, biologically-plausible motion energy “templates” are then used for recognition. Both methods show substantially greater accuracy at expression recognition than has been previously achieved.
منابع مشابه
Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFeature-Adaptive Motion Energy Analysis for Facial Expression Recognition
In this paper, we present a facial expression recognition method using feature-adaptive motion energy analysis. Our method is simplicityoriented and avoids complicated face model representations or computationally expensive algorithms to estimate facial motions. Instead, the proposed method uses a simplified action-based face model to reduce the computational complexity of the entire facial exp...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کامل