Supplementary Material for Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
نویسندگان
چکیده
In the main text we derived Adversarial Variational Bayes (AVB) and demonstrated its usefulness both for black-box Variational Inference and for learning latent variable models. This document contains proofs that were omitted in the main text as well as some further details about the experiments and additional results.
منابع مشابه
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference mo...
متن کاملVariational Approaches for Auto-Encoding Generative Adversarial Networks
Auto-encoding generative adversarial networks (GANs) combine the standard GAN algorithm, which discriminates between real and model-generated data, with a reconstruction loss given by an auto-encoder. Such models aim to prevent mode collapse in the learned generative model by ensuring that it is grounded in all the available training data. In this paper, we develop a principle upon which autoen...
متن کاملVariational Inference using Implicit Distributions
Generative adversarial networks (GANs) have given us a great tool to fit implicit generative models to data. Implicit distributions are ones we can sample from easily, and take derivatives of samples with respect to model parameters. These models are highly expressive and we argue they can prove just as useful for variational inference (VI) as they are for generative modelling. Several papers h...
متن کاملAdversarial Variational Optimization of Non-Differentiable Simulators
Complex computer simulators are increasingly used across fields of science as generative models tying parameters of an underlying theory to experimental observations. Inference in this setup is often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-di...
متن کاملConditional Autoencoders with Adversarial Information Factorization
Generative models, such as variational auto-encoders (VAE) and generative adversarial networks (GAN), have been immensely successful in approximating image statistics in computer vision. VAEs are useful for unsupervised feature learning, while GANs alleviate supervision by penalizing inaccurate samples using an adversarial game. In order to utilize benefits of these two approaches, we combine t...
متن کامل