Sediment pulses in mountain rivers: 2. Comparison between experiments and numerical predictions
نویسندگان
چکیده
[1] Mountain rivers in particular are prone to sediment input in the form of pulses rather than a more continuous supply. These pulses often enter in the form of landslides from adjacent hillslopes or debris flows from steeper tributaries. The activities of humans such as timber harvesting, road building, and urban development can increase the frequency of sediment pulses. The question as to how mountain rivers accommodate pulses of sediment thus becomes of practical as well as academic significance. In part 1 [Cui et al., 2003], the results of three laboratory experiments on sediment pulses are reported. It was found there that the pulses were eliminated from the flume predominantly by dispersion of the topographic high. Significant translation was observed only when the pulse material was substantially finer than the ambient load in the river. Here the laboratory data are used to test a numerical model originally devised for predicting the evolution of sediment pulses in field-scale gravel bed streams. The model successfully reproduces the predominantly dispersive deformation of the experimental pulses. Rates of dispersion are generally underestimated, largely because bed load transport rates are underestimated by the transport equation used in the model. The model reproduces the experimental data best when the pulse is significantly coarser than the ambient sediment. In this case, the model successfully predicts the formation and downstream progradation of a delta that formed in the backwater zone of the pulse in run 3. The performance of the model is less successful when the pulse is composed primarily of sand. This is likely because the bed load equation used in the study is specifically designed for gravel. When the model is adapted to conditions characteristic of large, sand bed rivers with low Froude numbers, it predicts substantial translation of pulses as well as dispersion.
منابع مشابه
Abrasion-set limits on Himalayan gravel flux.
Rivers sourced in the Himalayan mountain range carry some of the largest sediment loads on the planet, yet coarse gravel in these rivers vanishes within approximately 10-40 kilometres on entering the Ganga Plain (the part of the North Indian River Plain containing the Ganges River). Understanding the fate of gravel is important for forecasting the response of rivers to large influxes of sedimen...
متن کاملDramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake
Changes in river channel erosion or deposition affect the geomorphic evolution, aquatic ecosystems, and river regulation strategies. Fluvial processes are determined by the flow, sediment and boundary conditions, and it has long been expected that increasing sediment supply will induce aggradation. Here, based on thorough field surveys, we show the unexpected undercutting of the piedmont rivers...
متن کاملUncertainties in Evaluation of the Sediment Transport Rates in Typical Coarse-Bed Rivers in Iran
Flow and sediment transport processes are different and more complex in coarse-bed rivers than in sand-bed rivers. The main goal of the present study is to evaluate different modes of sediment transport using different hydrometric and hydraulic methods, and to address the major uncertainties. Four river reaches were selected as representatives of coarse-bed rivers in the Northwest of Iran. A se...
متن کاملA generalized power law approximation for fluvial incision of bedrock channels
[1] Sediment flux is known to influence bedrock incision rates in mountain rivers. Although the widely used stream power incision model lacks any explicit representation of sediment flux, the model appears to work in a variety of real settings. We address this apparent contradiction using numerical experiments to explore the morphology of fluvial landscapes evolved with four different incision ...
متن کاملThe most Appropriate Statistical Method for Suspended Sediment Estimation of Rivers (Case Study: Roodak Station of the Jajrood Basin)
The sediment load that is transported by rivers can create numerous problems such as sedimentation in the reservoir and storage capacity reduction, developed load in the rivers, destruction of structures along the river and transfer of pollution. Therefore, an accurate estimate of the sediment load in rivers is absolutely essential for river engineering, reservoir design, sediment transportatio...
متن کامل