Using Bayesian Model Averaging to Calibrate Forecast Ensembles

نویسندگان

  • Adrian E. Raftery
  • Fadoua Balabdaoui
  • Tilmann Gneiting
  • Michael Polakowski
چکیده

Ensembles used for probabilistic weather forecasting often exhibit a spread-skill relationship, but they tend to be underdispersive. This paper proposes a principled statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts, and reflect the models’ skill over the training period. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA predictive variance can be decomposed into two components, one corresponding to the between-forecast variability, and the second to the within-forecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spread-skill relationship but yet to be underdispersive. The method was applied to 48-hour forecasts of sea-level pressure in the Pacific Northwest in January–June, 2000 using the University of Washington MM5 mesoscale ensemble. The predictive PDFs were much better calibrated than the raw ensemble, the BMA forecasts were sharp in that 90% BMA prediction intervals were 62% shorter on average than those produced by sample climatology. As a byproduct, BMA yields a deterministic point forecast, and this had RMSE 11% lower than any of the ensemble members, and 6% lower than the ensemble mean. Similar results were obtained for forecasts of surface temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

[1] Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multiobjective optimization and Bayesian model averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use ...

متن کامل

Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction

Wind direction is an angular variable, as opposed to weather quantities such as temperature, quantitative precipitation, or wind speed, which are linear variables. Consequently, traditional model output statistics and ensemble postprocessing methods become ineffective, or do not apply at all. This paper proposes an effective bias correction technique for wind direction forecasts from numerical ...

متن کامل

Calibrating Multimodel Forecast Ensembles with Exchangeable and Missing Members Using Bayesian Model Averaging

Bayesian model averaging (BMA) is a statistical postprocessing technique that generates calibrated and sharp predictive probability density functions (PDFs) from forecast ensembles. It represents the predictive PDF as a weighted average of PDFs centered on the bias-corrected ensemble members, where the weights reflect the relative skill of the individual members over a training period. This wor...

متن کامل

Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling

Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery et al. Mon Weather Rev 133:1155–1174, 2005) has recommended the Expec...

متن کامل

Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging

Ensembles of forecasts are typically employed to account for the forecast uncertainties inherent in predictions of future weather states. However, biases and dispersion errors often present in forecast ensembles require statistical post-processing. Univariate post-processing models such as Bayesian model averaging (BMA) have been successfully applied for various weather quantities. Nonetheless,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005