Reproducing polynomial particle methods for boundary integral equations

نویسندگان

  • Hae-Soo Oh
  • Christopher Davis
  • YongHoon Kwon
چکیده

Since meshless methods have been introduced to alleviate the difficulties arising in conventional finite element method, many papers on applications of meshless methods to boundary element method have been published. However, most of these papers use moving least squares approximation functions that have difficulties in prescribing essential boundary conditions. Recently, in order to strengthen the effectiveness of meshless methods, Oh et al. developed meshfree reproducing polynomial particle (RPP) shape functions, patchwise RPP and reproducing singularity particle (RSP) shape functions with use of flat-top partition of unity. All of these approximation functions satisfy the Kronecker delta property. In this paper, we report that meshfree RPP shape functions, patchwise RPP shape functions, and patchwise RSP shape functions effectively handle boundary integral equations with (or without) domain singularities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meshfree Particle Methods in the Framework of Boundary Element Methods for the Helmholtz Equation

In this paper, we study electromagnetic wave scattering from periodic structures and eigenvalue analysis of the Helmholtz equation. Boundary element method (BEM) is an effective tool to deal with Helmholtz problems on bounded as well as unbounded domains. Recently, Oh et al.([29]) developed reproducing polynomial boundary particle methods (RPBPM) that can handle effectively boundary integral eq...

متن کامل

A New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel ‎Method

This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...

متن کامل

An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

متن کامل

Error estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space

In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.

متن کامل

Reproducing Polynomial(Singularity) Particle Methods and Adaptive Meshless Methods for 2-Dim Elliptic Boundary Value Problems

Oh et al ([25]) introduced the reproducing polynomial particle (RPP) shape functions that are piecewise polynomial and satisfy the Kronecker delta property. In this paper, we introduce RPPM (Reproducing Polynomial Particle Methods) that is the Galerkin approximation method associated with the use of the RPP approximation space. Planting particles in the computation domain in a patchwise uniform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011