Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi0.1 high-entropy alloy processed by high- pressure torsion

نویسندگان

  • Hamed Shahmir
  • Mahmoud Nili-Ahmadabadi
  • Ahad Shafie
  • Terence G Langdon
چکیده

A CoCrFeNiMnTi0.1 high-entropy alloy (HEA) was subjected to high-pressure torsion (HPT) processing under 6.0 GPa pressure up to 10 turns. XRD results reveal that the initial and HPT-processed microstructures consist of a single fcc phase and there is no evidence for creating a new phase and the occurrence of a phase transformation during HPT processing. It is shown that there is a gradual evolution in hardness with increasing numbers of turns but full homogeneity is not achieved even after 10 turns. Microhardness measurements reveal that the material reaches a saturation hardness value of Hv ≈ 460 which is approximately three times higher than for the homogenized alloy. The nanostructured HEA was subjected to post-deformation annealing (PDA) at 473-1173 K and it is shown that the hardness increases slightly up to Hv ≈ 550 at 773 K due to a phase decomposition and the formation of new precipitates and then decreases to the hardness of the homogenized sample (Hv ≈ 140) at 1173 K due to a combination of recrystallization, grain growth and dissolution of the precipitates. The results reveal that an addition of only 2 at.% Ti will improve the hardness and thermal stability of the nanocrystalline CoCrFeNiMn HEA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing

High-pressure torsion (HPT) and thermal annealing were applied to a face-centered cubic as-cast Al0.3CoCrFeNi high entropy alloy. Processing by HPT produced a nanostructure with a higher incremental hardness than in most HPT single-phase materials and subsequent annealing at appropriate temperatures gave an ordered body-centered cubic secondary phase with an additional increase in hardness. The...

متن کامل

Synthesis and thermal stability of nanocrystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying

Thermal stability and the kinetics of the grain growth of nano-crystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying (MA) were investigated. It started with elemental powders, using a variety of analytical techniques including differential scanning calorimetry (DSC), X-ray diffraction method (XRD), and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (E...

متن کامل

Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature

An Al–3% Mg–0.2% Sc alloy was solution treated and processed through 10 turns of highpressure torsion (HPT) at 450 K. Afterwards, the HPT-processed alloy was annealed for 1 h at temperatures ranging from 423 to 773 K and its mechanical properties and microstructural evolution were examined using microhardness measurements and electron backscattered diffraction (EBSD) analysis. The results demon...

متن کامل

Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures

High-pressure torsion (HPT) is applied to a face-centered cubic CoCrFeMnNi high-entropy alloy at 293 and 77 K. Processing by HPT at 293 K produced a nanostructure consisted of (sub)grains of ~50 nm after a rotation for 180◦. The microstructure evolution is associated with intensive deformation-induced twinning, and substructure development resulted in a gradual microstructure refinement. Deform...

متن کامل

Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion

An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB-NB, twin-NB and twin-twin inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017