Recovering a stochastic process from super-resolution noisy ensembles of single-particle trajectories.

نویسندگان

  • N Hoze
  • D Holcman
چکیده

Recovering a stochastic process from noisy ensembles of single-particle trajectories is resolved here using the coarse-grained Langevin equation as a model. The massive redundancy contained in single-particle tracking data allows recovering local parameters of the underlying physical model. We use several parametric and nonparametric estimators to compute the first and second moments of the process, to recover the local drift, its derivative, and the diffusion tensor, and to deconvolve the instrumental from the physical noise. We use numerical simulations to also explore the range of validity for these estimators. The present analysis allows defining what can exactly be recovered from statistics of super-resolution microscopy trajectories used for characterizing molecular trafficking underlying cellular functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles

In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Super-resolution Restoration of Continuous Image Sequence - Adaptive Filtering Approach

In this paper, we propose computationally efficient super-resolution restoration algorithms for blurred, noisy and down-sampled continuous image sequences. The proposed approach is a generalization of the stochastic estimation based methods (the ML and the MAP estimators) for the restoration of single blurred and noisy images. The blur, decimation, and noise degredations are modeled as a sparse...

متن کامل

A Novel Super Resolution Reconstruction

Due to the factors like processing power limitations and channel capabilities images are often down sampled and transmitted at low bit rates resulting in a low resolution compressed image. High resolution images can be reconstructed from several blurred, noisy and down sampled low resolution images using a computational process know as super resolution reconstruction. Super-resolution is the pr...

متن کامل

A novel super resolution reconstruction of low reoslution images progressively using dct and zonal filter based denoising

Due to the factors like processing power limitations and channel capabilities images are often down sampled and transmitted at low bit rates resulting in a low resolution compressed image. High resolution images can be reconstructed from several blurred, noisy and down sampled low resolution images using a computational process know as super resolution reconstruction. Super-resolution is the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 5  شماره 

صفحات  -

تاریخ انتشار 2015