Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase.

نویسندگان

  • W S Li
  • K T Lum
  • M Chen-Goodspeed
  • M A Sogorb
  • F M Raushel
چکیده

The catalytic activity of the bacterial phosphotriesterase (PTE) toward a series of chiral analogues of the chemical warfare agents sarin and soman was measured. Chemical procedures were developed for the chiral syntheses of the S(P)- and R(P)-enantiomers of O-isopropyl p-nitrophenyl methylphosphonate (sarin analogue) in high enantiomeric excess. The R(P)-enantiomer of the sarin analogue (k(cat)=2600 s(-1)) was the preferred substrate for the wild-type PTE relative to the corresponding S(P)-enantiomer (k(cat)=290 s(-1)). The observed stereoselectivity was reversed using the PTE mutant, I106A/F132A/H254Y where the k(cat) values for the R(P)- and S(P)-enantiomers were 410 and 4200 s(-1), respectively. A chemo-enzymatic procedure was developed for the chiral synthesis of the four stereoisomers of O-pinacolyl p-nitrophenyl methylphosphonate (soman analogue) with high diastereomeric excess. The R(P)R(C)-stereoisomer of the soman analogue was the preferred substrate for PTE. The k(cat) values for the soman analogues were measured as follows: R(P)R(C,) 48 s(-1); R(P)S(C), 4.8 s(-1); S(P)R(C), 0.3 s(-1), and S(P)S(C), 0.04 s(-1). With the I106A/F132A/H254Y mutant of PTE the stereoselectivity toward the chiral phosphorus center was reversed. With the triple mutant the k(cat) values for the soman analogues were found to be as follows: R(P)R(C,) 0.3 s(-1); R(P)S(C), 0.3 s(-1); S(P)R(C), 11s(-1), and S(P)S(C), 2.1 s(-1). Prior investigations have demonstrated that the S(P)-enantiomers of sarin and soman are significantly more toxic than the R(P)-enantiomers. This investigation has demonstrated that mutants of the wild-type PTE can be readily constructed with enhanced catalytic activities toward the most toxic stereoisomers of sarin and soman.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters.

The most lethal organophosphorus nerve agents (NA), like sarin, soman, agent-VX and Russian-VX, share a methylphosphonate moiety. Pseudomonas diminuta phosphotriesterase (PTE) catalyses the hydrolysis of methylphosphonate NA analogues with a catalytic efficiency orders of magnitude lower than that towards the pesticide paraoxon. With a view to obtaining PTE variants that more readily accept met...

متن کامل

Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase.

Wild-type phosphotriesterase (PTE) preferentially hydrolyzes the R(P) enantiomers of the nerve agents sarin (GB) and cyclosarin (GF) and their chromophoric analogues. The active site of PTE can be subdivided into three binding pockets that have been denoted as the small, large, and leaving group pockets based on high-resolution crystal structures. The sizes and shapes of these pockets dictate t...

متن کامل

Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin.

Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based...

متن کامل

Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases.

Mammalian hepatic carboxylesterases (CEs) play important roles in the detoxification of ester-containing pyrethroids, which are widely used for the control of agricultural pests and disease vectors such as mosquitoes. Pyrethroids and pyrethroid-like fluorescent substrates exhibit a consistent pattern of stereoselective hydrolysis by a recombinant murine hepatic CE. We sought to understand wheth...

متن کامل

Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication.

The acute toxicity of organophosphorus (OP) compounds in mammals is due to their irreversible inhibition of acetylcholinesterase (AChE) in the nervous system, which leads to increased synaptic acetylcholine levels. The protective actions of intravenously (i.v.) administered pyridostigmine, physostigmine, eptastigmine, and an organophosphate hydrolase, phosphotriesterase, in acute sarin intoxica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2001