Low-cost distributed solar-thermal-electric power generation
نویسندگان
چکیده
Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentratorcollector operation at moderate temperatures, in the range of 125◦C to 150◦C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.
منابع مشابه
Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation
Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation
متن کاملResource Scheduling in a Smart Grid with Renewable Energy Resources and Plug-In Vehicles by MINLP Method
This paper presents a formulation of unit commitment for thermal units integrated with wind and solar energy systems and electrical vehicles with emphasizing on Mixed Integer Nonlinear Programming (MINLP). The renewable energy resources are included in this model due to their low electricity cost and positive effect on environment. As well as, coordinated charging strategy of electrical vehicle...
متن کاملGeneration Scheduling in Large-Scale Power Systems with Wind Farms Using MICA
The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...
متن کاملStirling Engines for Distributed Low-Cost Solar-Thermal-Electric Power Generation
Due to their high relative cost, solar-electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaics, but offered at about $1/W, would lead to widespread deployment at residential and commercial sites. This paper addresses the feasibility study of a low-cost solar-thermal electricity generation technolog...
متن کاملEconomic Aspect of Fuel Cell Power as Distributed Generation
This paper presents an energy management strategy to supply residential load by hybrid fuel cell power plant (FCPP). Economical fuel cell (FC) model includes thermal load, local electrical load, operational cost, startup cost and different tariffs on electricity during the day hour is discussed. Several Strategies have been presented for supplying residential load (electrical and thermal loads...
متن کامل