Financial time series modeling with evolutionary trained random iterated neural networks

نویسندگان

  • Fernando Niño
  • German Hernandez
  • Andrés Parra
چکیده

In this paper it is shown how to model times series by using random iterated neural networks with place-dependent probabilities. The model assumes that the time series comes from a dynamical system which has a compact global attractor and a physical probability measure supported on the attractor. Also, an evolutionary algorithm is used to train a random iterated neural network that models a nancial time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Thesis for the Degree of Master of Science Improving Time Series Prediction Using Recurrent Neural Networks and Evolutionary Algorithms

In this thesis, artificial neural networks (ANNs) are used for prediction of financial and macroeconomic time series. ANNs build internal models of the problem and are therefore suited for fields in which accurate mathematical models cannot be formed, e.g. meteorology and economics. Feedforward neural networks (FFNNs), often trained with backpropagation, constitute a common type of ANNs. Howeve...

متن کامل

Increasing Translation Invariant Morphological Forecasting Models for Stock Market Prediction

Statistical models have been widely used for the purpose of forecasting. However, it has some limitations regarding its performance, which prevents an automatic forecasting system development. In order to overcome such limitations, Artificial Neural Networks (ANNs), Evolutionary Algorithms (EAs) and Fuzzy Systems (FSs) based approaches have been proposed for nonlinear time series modeling. Howe...

متن کامل

Predicting Turning Points in Financial Markets with Fuzzy-Evolutionary and Neuro-Evolutionary Modeling

Two independent evolutionary modeling methods, based on fuzzy logic and neural networks respectively, are applied to predicting trend reversals in financial time series, and their performances are compared. Both methods are found to give essentially the same results, indicating that trend reversals are partially predictable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000