Numerical Integrators That Contract Volume

نویسنده

  • ROBERT I. MCLACHLAN
چکیده

We study numerical integrators that contract phase space volume even when the ODE does so at an arbitrarily small rate. This is done by a splitting into two-dimensional contractive systems. We prove a sufficient condition for Runge-Kutta methods to have the appropriate contraction property for these two-dimensional systems; the midpoint rule is an example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What kinds of dynamics are there? Lie pseudogroups, dynamical systems, and geometric integration

We classify dynamical systems according to the group of diffeomorphisms to which they belong, with application to geometric integrators for ODEs. This point of view unifies symplectic, Lie group, and volume-, integral-, and symmetrypreserving integrators. We review the Cartan classification of the primitive infinite-dimensional Lie pseudogroups (and hence of dynamical systems), and select the c...

متن کامل

Pii: S0168-9274(99)00131-2

We study numerical integrators that contract phase space volume even when the ODE does so at an arbitrarily small rate. This is done by a splitting into two-dimensional contractive systems. We prove a sufficient condition for Runge–Kutta methods to have the appropriate contraction property for these two-dimensional systems; the midpoint rule is an example.  2000 IMACS. Published by Elsevier Sc...

متن کامل

Exponential Rosenbrock integrators for pricing American options

In this talk, exponential Rosenbrock methods are investigated for applications in finance. The methods are shown to be an alternative to other existing procedures for the numerical valuation of American type contracts. Exponential Rosenbrock methods have good stability properties, they are fully explicit and do not require the numerical solution of linear systems as in contrast to standard inte...

متن کامل

A Non-Existence Result for Hamiltonian Integrators

We consider the numerical simulation of Hamiltonian systems of ordinary differential equations. Two features of Hamiltonian systems are that energy is conserved along trajectories and phase space volume is preserved by the flow. We want to determine if there are integration schemes that preserve these two properties for all Hamiltonian systems, or at least for all systems in a wide class. This ...

متن کامل

Calculating effective diffusivities in the limit of vanishing molecular diffusion

In this paper we study the problem of the numerical calculation (by Monte Carlo Methods) of the effective diffusivity for a particle moving in a periodic divergent-free velocity filed, in the limit of vanishing molecular diffusion. In this limit traditional numerical methods typically fail, since they do not represent accurately the geometry of the underlying deterministic dynamics. We propose ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007