Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak.

نویسندگان

  • M Taniguchi
  • C Wilson
  • C A Hunter
  • D J Pehowich
  • A S Clanachan
  • G D Lopaschuk
چکیده

Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of high glucose/high insulin and dichloroacetate treatment on carbohydrate oxidation and functional recovery after low-flow ischemia and reperfusion in the isolated perfused rat heart.

BACKGROUND It is believed that increasing cardiac glucose metabolism in the setting of ischemia and reperfusion is protective because of the resulting decrease in fatty acid oxidation, which improves cardiac efficiency and increases glucose oxidation relative to glycolysis; however, these conclusions are based primarily on studies in which glucose is the only carbohydrate provided. The goal of ...

متن کامل

Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection.

The mechanisms of mitochondrial proton (H+) leak under various pathophysiological conditions are poorly understood. In the present study it was hypothesized that different mechanisms underlie H+ leak in cardiac IR (ischaemia/reperfusion) injury and IPC (ischaemic preconditioning). Potential H(+) leak mechanisms examined were UCPs (uncoupling proteins), allosteric activation of the ANT (adenine ...

متن کامل

Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts.

In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be crucial for the cuttlefish's competitive success in variable environments. T...

متن کامل

THE EFECT OF DICHLOROACETATE AND ENDURANCE TRAINING ON THE GENES EXPRESSION OF SUPEROXIDE DISMUTASE (SOD) AND GLUTATHIONE PEROXIDASE (GPX) IN CARDIAC MUSCLE OF DIABETIC MALE RATS

Background: Oxidative stress plays a key role in the onset and development of diabetes Complications, Including diabetic cardiomyopathy. The purpose of this study was to investigate the role of dichloroacetate (DCA) on SOD and GPX expression following six weeks’ endurance training in cardiac muscle of diabetic male rats. Methods: In this experimental study, 64 male Wistar rats were selected an...

متن کامل

Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells.

Cells isolated from the hepatopancreas of estivating snails (Helix aspersa) have strongly depressed mitochondrial respiration compared with controls. Mitochondrial respiration was divided into substrate oxidation (which produces the mitochondrial membrane potential) and ATP turnover and proton leak (which consume it). The activity of substrate oxidation (and probably ATP turnover) decreased, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 2001