Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation.

نویسندگان

  • Jodi L Karnell
  • Fredrick G Karnell
  • Geoffrey L Stephens
  • Bhargavi Rajan
  • Chris Morehouse
  • Ying Li
  • Bonnie Swerdlow
  • Mildred Wilson
  • Raphaela Goldbach-Mansky
  • Christopher Groves
  • Anthony J Coyle
  • Ronald Herbst
  • Rachel Ettinger
چکیده

Production of pathogenic Abs contributes to disease progression in many autoimmune disorders. The immunosuppressant agent mycophenolic acid (MPA) has shown clinical efficacy for patients with autoimmunity. The goal of these studies was to elucidate the mechanisms of action of MPA on B cells isolated from healthy individuals and autoimmune patients. In this study, we show that MPA significantly inhibited both proliferation and differentiation of primary human B cells stimulated under various conditions. Importantly, MPA did not globally suppress B cell responsiveness or simply induce cell death, but rather selectively inhibited early activation events and arrested cells in the G0/G1 phase of the cell cycle. Furthermore, MPA blocked expansion of both naive and memory B cells and prevented plasma cell (PC) differentiation and Ab production from healthy controls and individuals with rheumatoid arthritis. Finally, whereas MPA potently suppressed Ig secretion from activated primary B cells, terminally differentiated PCs were not susceptible to inhibition by MPA. The target of MPA, IMPDH2, was found to be downregulated in PCs, likely explaining the resistance of these cells to MPA. These results suggest that MPA provides benefit in settings of autoimmunity by directly preventing activation and PC differentiation of B cells; however, MPA is unlikely to impact autoantibody production by preexisting, long-lived PCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of mycophenolic acid and bortezomib on purified human B cells: an in vitro study of long-term functionally stable MICA-sensitized renal recipients.

OBJECTIVES We sought to develop a B-cell in vitro culture system and test B cells isolated from sensitized kidney recipients and healthy controls, and assess the effectiveness of proteasome inhibitors and mycophenolic acid on antibody secretion and cell apoptosis. MATERIALS AND METHODS CD19(+) B cells and CD19(+)CD27(+) memory B-cell subsets were detected from peripheral blood mononuclear cel...

متن کامل

Expression of IMP dehydrogenase in differentiating HL-60 cells.

Addition of mycophenolic acid to cultures of HL-60 cells results in a decreased cellular level of guanine nucleotides and the induction of cell differentiation. During the early stages of this induction, steady-state levels of cellular IMP dehydrogenase (IMPDH), messenger RNA (mRNA), and protein are increased, perhaps because of cellular compensation for the inhibition of IMPDH activity. The su...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles

Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 187 7  شماره 

صفحات  -

تاریخ انتشار 2011