Ultrasound-induced lung hemorrhage is not caused by inertial cavitation.
نویسندگان
چکیده
In animal experiments, the pathogenesis of lung hemorrhage due to exposure to clinical diagnostic levels of ultrasound has been attributed to an inertial cavitation mechanism. The purpose of this article is to report the results of two experiments that directly contradict the hypothesis that ultrasound-induced lung hemorrhage is caused by inertial cavitation. Elevated hydrostatic pressure was used to suppress the involvement of inertial cavitation. In experiment one, 160 adult mice were equally divided into two hydrostatic pressure groups (0.1 or 1.1 MPa), and were randomly exposed to pulsed ultrasound (2.8-MHz center frequency, 1-kHz PRF, 1.42-micros pulse duration, 10-s exposure duration). For the two hydrostatic pressure groups (80 mice each), 8 in situ peak rarefactional pressure levels were used that ranged between 2.82 and 11.8 MPa (10 mice/group). No effect of hydrostatic pressure on the probability of hemorrhage was observed. These data lead to the conclusion that lung hemorrhage is not caused by inertial cavitation. Also, the higher hydrostatic pressure enhanced rather than inhibited the impact of ultrasonic pressure on the severity (hemorrhage area, depth, and volume) of lesions. These counterintuitive findings were confirmed in a second experiment using a 2 x 5 factorial design that consisted of two ultrasonic pressure levels and five hydrostatic pressure levels (100 mice, 10 mice/group). If inertial cavitation were the mechanism responsible for lung hemorrhage, then elevated hydrostatic pressures should have resulted in less rather than more tissue damage at each ultrasonic pressure level. This further supports the conclusion that the pathogenesis of ultrasound-induced lung hemorrhage is not caused by inertial cavitation.
منابع مشابه
Effect of contrast agent on the incidence and magnitude of ultrasound-induced lung hemorrhage in rats.
OBJECTIVE To test the hypothesis that inertial cavitation in the vasculature of the lung is not the physical mechanism responsible for ultrasound-induced lung hemorrhage. METHODS A factorial design was used to study the effects of two types of injected agents (IA; 0.25 ml per rat of saline or Optison given intravenously) and two levels of pulsed ultrasound exposure (UE; in situ peak rarefacti...
متن کاملEvaluating the Effects of Dual Frequency Sonication Parameters on Acoustic Cavitation by Chemical Dosimeter Using Iodide
Background and Aims: Production of acoustic cavitation by sonication has been recently recommended as a targeted treatment. The experimental results from studies indicate that the activity of cavitation generated by bi- or multi-frequency ultrasound irradiation is higher than that caused by single frequency irradiation. In this study, effects dual (1 MHz and 40 kHz) and single frequency soni...
متن کاملThe search for cavitation in vivo.
Until the mid 1970s, it was generally assumed that, with the short pulses of ultrasound (US) used in medical diagnosis, there was little need for concern about the possibility of inertial cavitation in vivo. This assumption came into question when experimental evidence indicated that killing of fruit fly larvae by diagnostically relevant US was associated with the presence of gas in the respira...
متن کاملEffect of pulse polarity and energy on ultrasound-induced lung hemorrhage in adult rats.
The objective of this study was to further assess the role of inertial cavitation in ultrasound-induced lung hemorrhage by examining the effect of pulse polarity at a common in situ (at the lung surface) peak rarefactional pressure [pr(in situ)] and at a common in situ pulse intensity integral (PII(in situ)). A total of 60 rats was divided into three experimental groups of 20 animals per group ...
متن کاملSubmicron-Bubble-Enhanced Focused Ultrasound for Blood–Brain Barrier Disruption and Improved CNS Drug Delivery
The use of focused ultrasound (FUS) with microbubbles has been proven to induce transient blood-brain barrier opening (BBB-opening). However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 108 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2000