Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury.
نویسندگان
چکیده
Hypoxia inducible factor-1 (HIF-1) regulates changes in transcription of key genes such as inducible NO synthase (iNOS) in hypoxic/ischemic environments. In normoxia, HIF-1 activation is controlled by HIF-1alpha-prolyl 4-hydroxylases, which target HIF-1alpha for ubiquitination and proteasomal degradation. We hypothesized that normoxic HIF-1 preservation could attenuate cardiac ischemia/reperfusion injury via a preconditioning effect. HIF-1 preservation was achieved by using small interfering RNA (siRNA) to silence murine HIF-1alpha-prolyl-4 hydroxylase-2 (PHD2). PHD2 siRNA reduced PHD2 mRNA expression 89+/-1.5% (P<0.001) in a time- and concentration-dependent manner in normoxic murine microvascular endothelial cells (EC). PHD2 silencing in normoxic EC stabilized HIF-1alpha protein levels while significantly increasing HIF-1 transcriptional activity and iNOS mRNA expression. Wild-type mice infused with PHD2 siRNA (1.5 microg/g body weight) showed a 61+/-2.4% (P<0.05) reduction in cardiac PHD2 mRNA within 24 hours. In addition HIF-1alpha protein levels and HIF-1-dependent iNOS mRNA levels were increased. PHD2 siRNA-transfected hearts from wild-type mice (n=6) subjected to 30 minutes ischemia followed by 60 minutes reperfusion exhibited reduced infarct size when compared with saline-treated controls (9.7+/-1.9% versus 31.6+/-1.8%, respectively, P<0.0001, n=6) and to control mice transfected with a nontargeting siRNA control (28.4+/-3.0%, P<0.0001, n=6). Hearts from iNOS knockout mice receiving PHD2 siRNA by identical injection protocol (n=6) exhibited infarct size indistinguishable from saline controls (28.7+/-1.3%). These results show that in vitro and in vivo, PHD2 silencing using a siRNA strategy produces transcriptionally active HIF-1. Normoxic activation of HIF-1 in hearts following in vivo PHD2 siRNA administration attenuates reperfusion injury via an iNOS-dependent pathway.
منابع مشابه
Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium.
Emerging research suggests that oxidant-driven transcription of key cytokine/chemokine networks within the myocardium plays a crucial role in producing ischemia-reperfusion (I/R) injury. We recently showed that activation of hypoxia-inducible factor-1 (HIF-1) attenuated cardiac I/R injury. Diminished injury in these prior studies was associated with significant reductions in circulating interle...
متن کاملHIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation.
The CXC chemokine IL-8, which promotes adhesion, activation, and transmigration of polymorphonuclear neutrophils (PMN), has been associated with production of tissue injury in reperfused myocardium. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric peptide that is a key regulator of genes such as heme oxygenase (HO)-1 expressed under hypoxic conditions. We hypothesized that HO-1 plays an im...
متن کاملDepletion of PHD3 Protects Heart from Ischemia/Reperfusion Injury by Inhibiting Cardiomyocyte Apoptosis
PHD3, a member of a family of Prolyl-4 Hydroxylase Domain (PHD) proteins, has long been considered a pro-apoptotic protein. Although the pro-apoptotic effect of PHD3 requires its prolyl hydroxylase activity, it may be independent of HIF-1α, the common substrate of PHDs. PHD3 is highly expressed in the heart, however, its role in cardiomyocyte apoptosis remains unclear. This study was undertaken...
متن کاملProlyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium.
RATIONALE Transplantation of stem cells into damaged hearts has had modest success as a treatment for ischemic heart disease. One of the limitations is the poor stem cell survival in the diseased microenvironment. Prolyl hydroxylase domain protein 2 (PHD2) is a cellular oxygen sensor that regulates 2 key transcription factors involved in cell survival and inflammation: hypoxia-inducible factor ...
متن کاملProlyl hydroxylase 2 (PHD2) inhibition protects human renal epithelial cells and mice kidney from hypoxia injury
Prolyl hydroxylase domain protein 2 (PHD2) is a key oxygen sensor, setting low steady-state level of hypoxia-inducible factor-α (HIF-α). Here, we showed that treatment of cobalt chloride (CoCl2), a hypoxia mimic, in HK-2 tubular epithelial cells induced PHD2 and HIF-1/2α expression as well as cell apoptosis and autophagy activation. Three methyladenine (3-MA), the autophagy inhibitor, blocked a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 98 1 شماره
صفحات -
تاریخ انتشار 2006