Improved Algorithms for Efficient Arithmetic on Elliptic Curves Using Fast Endomorphisms

نویسندگان

  • Mathieu Ciet
  • Tanja Lange
  • Francesco Sica
  • Jean-Jacques Quisquater
چکیده

In most algorithms involving elliptic curves, the most expensive part consists in computing multiples of points. This paper investigates how to extend the τ -adic expansion from Koblitz curves to a larger class of curves defined over a prime field having an efficiently-computable endomorphism φ in order to perform an efficient point multiplication with efficiency similar to Solinas’ approach presented at CRYPTO ’97. Furthermore, many elliptic curve cryptosystems require the computation of k0P+k1Q. Following the work of Solinas on the Joint Sparse Form, we introduce the notion of φ-Joint Sparse Form which combines the advantages of a φ-expansion with the additional speedup of the Joint Sparse Form. We also present an efficient algorithm to obtain the φ-Joint Sparse Form. Then, the double exponentiation can be done using the φ endomorphism instead of doubling, resulting in an average of l applications of φ and l/2 additions, where l is the size of the ki’s. This results in an important speed-up when the computation of φ is particularly effective, as in the case of Koblitz curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Jacobi Quartic Curves Revisited

This paper provides new results about efficient arithmetic on (extended) Jacobiquartic form elliptic curves y = dx + 2ax + 1. Recent works have shown thatarithmetic on an elliptic curve in Jacobi quartic form can be performed solidly fasterthan the corresponding operations in Weierstrass form. These proposals use up to 7coordinates to represent a single point. However, fast scal...

متن کامل

Families of Fast Elliptic Curves from ℚ-curves

We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducing Q-curves—curves over quadratic number fields without complex multiplication, but with isogenies to th...

متن کامل

Improved Algorithms for Arithmetic on Anomalous Binary Curves ?

It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over nite elds. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast ell...

متن کامل

Families of fast elliptic curves from Q-curves

We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the sameway asGallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducingQ-curves—curves over quadratic number fields without complex multiplication, butwith isogenies to their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003