Tetraspanin CD82 Inhibits Protrusion and Retraction in Cell Movement by Attenuating the Plasma Membrane-Dependent Actin Organization

نویسندگان

  • Wei M. Liu
  • Feng Zhang
  • Simon Moshiach
  • Bin Zhou
  • Chao Huang
  • Kamalakkannan Srinivasan
  • Seema Khurana
  • Yi Zheng
  • Jill M. Lahti
  • Xin A. Zhang
چکیده

To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated that the polarized protrusion and retraction of the plasma membrane became deficient upon KAI1/CD82 expression. The deficiency in developing these motility-related cellular events was caused by poor formations of actin cortical network and stress fiber and by aberrant dynamics in actin organization. Rac1 activity was reduced by KAI1/CD82, consistent with the diminution of lamellipodia and actin cortical network; while the growth factor-stimulated RhoA activity was blocked by KAI1/CD82, consistent with the loss of stress fiber and attenuation in cellular retraction. Upon KAI1/CD82 expression, Rac effector cofilin was not enriched at the cell periphery to facilitate lamellipodia formation while Rho kinase exhibited a significantly lower activity leading to less retraction. Phosphatidylinositol 4, 5-biphosphate, which initiates actin polymerization from the plasma membrane, became less detectable at the cell periphery in KAI1/CD82-expressing cells. Moreover, KAI1/CD82-induced phenotypes likely resulted from the suppression of multiple signaling pathways such as integrin and growth factor signaling. In summary, at the cellular level KAI1/CD82 inhibited polarized protrusion and retraction events by disrupting actin reorganization; at the molecular level, KAI1/CD82 deregulated Rac1, RhoA, and their effectors cofilin and Rho kinase by perturbing the plasma membrane lipids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity.

The cancer metastasis suppressor protein KAI1/CD82 is a member of the tetraspanin superfamily. Recent studies have demonstrated that tetraspanins are palmitoylated and that palmitoylation contributes to the organization of tetraspanin webs or tetraspanin-enriched microdomains. However, the effect of palmitoylation on tetraspanin-mediated cellular functions remains obscure. In this study, we fou...

متن کامل

Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR.

We have previously shown that CD82, a transmembrane protein of the tetraspanin superfamily is associated with EGFR and has a negative effect on EGF-induced signalling (Odintsova, E., Sugiura, T. and Berditchevski, F. (2000) Curr. Biol. 10, 1009-1012). Here we demonstrate that CD82 specifically attenuates ligand-induced dimerization of EGFR. The recombinant soluble large extracellular loop of CD...

متن کامل

Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.

T-cell activation is initiated by the concerted engagement of the T-cell receptor and different co-stimulatory molecules, and requires cytoskeleton-dependent membrane dynamics. Here, we have studied the relationships between tetraspanins, cytoskeleton and raft microdomains, and their relevance in T-cell signaling. Localization studies and density-gradient flotation experiments indicate that par...

متن کامل

Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes.

Activation of T lymphocytes requires the engagement of the T-cell receptor and costimulation molecules through cell-to-cell contacts. The tetraspanin CD82 has previously been shown to act as a cytoskeleton-dependent costimulation molecule. We show here that CD82 engagement leads to the tyrosine phosphorylation and association of both the Rho GTPases guanosine exchange factor Vav1 and adapter pr...

متن کامل

Tetraspanin CD82 Regulates the Spatiotemporal Dynamics of PKCα in Acute Myeloid Leukemia

Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012