Task-Oriented Sparse Coding Model for Pattern Classification
نویسندگان
چکیده
Although the basic sparse coding model has been quite successful at explaining the receptive fields of simple cells in V1, it ignores an important constrain: perception task. We put forward a novel sparse coding model, called task-oriented sparse coding (TOSC) model, combining the discriminability constrain supervised by classification task, besides the sparseness criteria. Simulation experiments are performed using real images including class of scene and class of building. The results show that TOSC can organize some significant receptive fields with distinct topological structure which will favor the classification task. Moreover, the coefficients of TOSC notablely improve the classification accuracy, from the 53.5% of pixel-based model to 86.7%, in the case of none distinct damage on the performance of reconstruction error and sparseness. TOSC model, complementing the feedback sparse coding model, is more consistent with biological mechanism, and shows good potential in the feature extraction for pattern classification.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملImage classification using spatial pyramid robust sparse coding
Recently, the sparse coding based codebook learning and local feature encoding have been widely used for image classification. The sparse coding model actually assumes the reconstruction error follows Gaussian or Laplacian distribution, which may not be accurate enough. Besides, the ignorance of spatial information during local feature encoding process also hinders the final image classificatio...
متن کامل