Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task
نویسندگان
چکیده
The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.
منابع مشابه
Emotional and behavioral correlates of mediodorsal thalamic neurons during associative learning in rats.
Neuronal activity was recorded from the mediodorsal thalamic nucleus (MD) of behaving rats that were trained to lick a protruding spout just after a conditioned stimulus to obtain reward or to avoid shock. Conditioned stimuli included both elemental (auditory or visual stimuli) and configural (simultaneous presentation of auditory and visual stimuli predicting reward outcome opposite that predi...
متن کاملDissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus.
The mediodorsal nucleus (MD) is the thalamic gateway to the prefrontal cortex, an area of the brain associated with spatial and object working memory functions. We have recorded single-neuron activities from the MD nucleus in monkeys trained to perform spatial tasks with peripheral visual stimuli and a nonspatial task with foveally presented pictures of objects and faces-tasks identical to thos...
متن کاملPrefrontal Neurons Encode Actions and Outcomes in Conjunction with Spatial Location in Rats Performing a Dynamic Delayed Non-Match to Position Task
To respond adaptively to change organisms must utilize information about recent events and environmental context to select actions that are likely to produce favorable outcomes. We developed a dynamic delayed nonmatching to position task to study the influence of spatial context on event-related activity of medial prefrontal cortex neurons during reinforcement-guided decision-making. We found n...
متن کاملComparison of oculomotor neuronal activity in paralaminar and mediodorsal thalamus in the rhesus monkey.
We previously reported that neurons in the mediodorsal thalamic nucleus (MD) are topographically organized and express spatial and nonspatial coding properties similar to those of the prefrontal areas with which they are connected. In the course of mapping the dorsal thalamus, we also studied neurons in a subset of thalamic nuclei (the caudal part of the ventral lateral nucleus (VLc), the oral ...
متن کاملNeuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, delay-, and response-period activity.
The thalamic mediodorsal nucleus (MD) has strong reciprocal connections with the dorsolateral prefrontal cortex (DLPFC), suggesting that the MD, like the DLPFC, participates in higher cognitive functions. To examine MD's participation in cognitive functions, we analyzed the characteristics of task-related activities sampled homogeneously from the MD while two monkeys performed a spatial working...
متن کامل