Multiplex PCR: use of heat-stable Thermus thermophilus RecA protein to minimize non-specific PCR products

نویسندگان

  • Yasushi Shigemori
  • Tsutomu Mikawa
  • Takehiko Shibata
  • Michio Oishi
چکیده

In this paper we report that the inclusion of heat-resistant RecA protein from a thermophilic bacteria, Thermus thermophilus, and its cofactor (ATP) in PCR effectively eliminates non-specific PCR products. The effect of RecA protein, which catalyzes pairing between homologous DNA molecules with great fidelity in genetic recombination, is due to its promotion of precise priming in PCR (i.e. priming at sites where the primer sequence is completely complementary to that of the target sequence). In addition, the RecA protein substantially reduces the primer concentration required for PCR. These experimental results have led to the realization of multiplex PCR, which involves PCR for multiple sites in the same reaction mixture. We were able to successfully perform multiplex PCR with over a dozen reactions without affecting the amplification pattern of the PCR products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Use of MutS and RecA for Suppression of Nonspecific Amplification during PCR

Thermus thermophilus MutS, a thermostable mismatch-recognizing protein, is utilized in PCR to suppress nonspecific amplification by preventing synthesis from mismatched primers. T. thermophilus RecA also decreases nonspecific amplification by promoting proper hybridization between the primer and template. We observed that MutS and RecA function under the same reaction conditions and that MutS a...

متن کامل

Effects of pressure and temperature on the binding of RecA protein to single-stranded DNA.

The binding and polymerization of RecA protein to DNA is required for recombination, which is an essential function of life. We study the pressure and temperature dependence of RecA binding to single-stranded DNA in the presence of adenosine 5'-[γ-thio]triphosphate (ATP[γ-S]), in a temperature regulated high pressure cell using fluorescence anisotropy. Measurements were possible at temperatures...

متن کامل

Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops.

In PCR, DNA polymerases from thermophilic bacteria catalyze the extension of primers annealed to templates as well as the structure-specific cleavage of the products of primer extension. Here we show that cleavage by Thermus aquaticus and Thermus thermophilus DNA polymerases can be precise and substantial: it occurs at the base of the stem-loop structure assumed by the single strand products of...

متن کامل

High-level overproduction of His-tagged Tth DNA polymerase in Thermus thermophilus.

A new plasmid for the overexpression of His-tagged thermozymes in Thermus thermophilus was developed. With this plasmid, soluble and active histidine-tagged DNA polymerase from T. thermophilus was overproduced in larger amounts in the thermophile than in Escherichia coli. The protein purified from the thermophile was active in PCR.

متن کامل

Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase.

A recombinant DNA polymerase derived from the thermophilic eubacterium Thermus thermophilus (Tth pol) was found to possess very efficient reverse transcriptase (RT) activity in the presence of MnCl2. Many of the problems typically associated with the high degree of secondary structure present in RNA are minimized by using a thermostable DNA polymerase for reverse transcription, and predominantl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005