Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
نویسندگان
چکیده
Theoretically the Kohn-Sham band gap differs from the exact quasiparticle energy gap by the derivative discontinuity of the exchange-correlation functional. In practice for semiconductors and insulators the band gap calculated within any local or semilocal density approximations underestimates severely the experimental energy gap. On the other hand, calculations with an "exact" exchange potential derived from many-body perturbation theory via the optimized effective potential suggest that improving the exchange-correlation potential approximation can yield a reasonable agreement between the Kohn-Sham band gap and the experimental gap. The results in this work show that this is not the case. In fact, we add to the exact exchange the correlation that corresponds to the dynamical (random phase approximation) screening in the GW approximation. This accurate exchange-correlation potential provides band structures similar to the local density approximation with the corresponding derivative discontinuity that contributes 30%-50% to the energy gap. Our self-consistent results confirm substantially the results for Si and other semiconductors obtained perturbatively [R. W. Godby et al., Phys. Rev. B 36, 6497 (1987)] and extend the conclusion to LiF and Ar, a wide-gap insulator and a noble-gas solid.
منابع مشابه
Halogenated Graphdiyne and Graphyne Single Layers: A Systematic Study
Graphyne and graphdiyne families of flat carbon (sp2/sp) networks with high degrees of π-conjunction are attracting much attention due to their promising electronic, optical, and mechanical properties. In the present investigation we have studied the structural, mechanical, electrical and optical properties of halogenated graphdiyne and graphyne. The optical spectra of pure and halog...
متن کاملReduced Density Matrix Functional for Many-Electron Systems
Reduced density matrix functional theory for the case of solids is presented and a new exchange correlation functional based on a fractional power of the density matrix is introduced. We show that compared to other functionals, this produces more accurate results for finite systems. Moreover, it captures the correct band gap behavior for conventional semiconductors as well as strongly correlate...
متن کاملFirst–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO Polymorphs by PBE and mBJ Density Functionals
First principle calculations of nanolayered ZnO polymorphs (Wurzite–, Zincblende–, Rocksalt–structures) in the scheme of density functional theory were performedwith the help of full potential linear augmented plane wave (FP-LAPW) method. Theexchange - correlation potential is described by generalized gradient approximation asproposed by Perdew–Burke–Ernzrhof (GGA–PBE) and modified Becke–Johns...
متن کاملQuasiparticle bandstructure of zincblende and rocksalt ZnO
The GW approximation [1] to many body perturbation theory represents the state of the art technique to calculate the quasiparticle correction to the band gap of solids and has been sucessfully applied to many materials. Although the GW approximation works well with pseudopotentials (PP’s) and plane wave basis sets used within Density Functional Theory Local density approximation (DFT-LDA), the ...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 124 15 شماره
صفحات -
تاریخ انتشار 2006