Ionic Channels and Nerve Membrane Constituents
نویسندگان
چکیده
Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na(+) channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10(-6)M STX was 2.2 A(2)/cholesterol molecule at 25 degrees C. From surface pressure measurements at constant cholesterol area (39 A(2)/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10(-7)M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na(+) channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.
منابع مشابه
Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration
Objective(s): The aim of this study was to evaluate the final outcome of nerve regeneration across the eggsell membrane (ESM) tube conduit in comparison with autograft. Materials and Methods: Thirty adult male rats (250-300 g) were randomized into (1) ESM conduit, (2) autograft, and (3) sham surgery groups. The eggs submerged in 5% acetic acid. The decalcifying membranes were cut into four pie...
متن کاملIonic Channels and Nerve Membrane Constituents Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers
Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na+ channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluoresc...
متن کاملIonic channels and hormone release from peptidergic nerve terminals.
Although there is considerable evidence that depolarization of nerve cell terminals leads to the entry of Ca2+ and to the secretion of neurohormones and neurotransmitters, the details of how ionic currents control the release of neuroactive substances from nerve terminals are unknown. The small size of most nerve terminals has precluded direct analysis of membrane ionic currents and their influ...
متن کاملSingle ion-channel current measurements from rat brain synaptosomes in planar lipid bilayers.
Because of their small size and inaccessibility, direct electrical measurements of ionic conductances from mammalian brain presynaptic nerve terminals have not been possible. Measurements using voltage-sensitive fluorescent dyes, however, indicate that the membrane potential of a preparation enriched in pinched-off and resealed presynaptic nerve terminals (synaptosomes) depends principally on K...
متن کاملDetermining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 59 شماره
صفحات -
تاریخ انتشار 1972