Beam Search Induction and Similarity Constraints for Predictive Clustering Trees
نویسندگان
چکیده
Much research on inductive databases (IDBs) focuses on local models, such as item sets and association rules. In this work, we investigate how IDBs can support global models, such as decision trees. Our focus is on predictive clustering trees (PCTs). PCTs generalize decision trees and can be used for prediction and clustering, two of the most common data mining tasks. Regular PCT induction builds PCTs topdown, using a greedy algorithm, similar to that of C4.5. We propose a new induction algorithm for PCTs based on beam search. This has three advantages over the regular method: (a) it returns a set of PCTs satisfying the user constraints instead of just one PCT; (b) it better allows for pushing of user constraints into the induction algorithm; and (c) it is less susceptible to myopia. In addition, we propose similarity constraints for PCTs, which improve the diversity of the resulting PCT set.
منابع مشابه
Similarity Constraints in Beam-search Building of Predictive Clustering Trees
We investigate how inductive databases (IDBs) can support global models, such as decision trees. We focus on predictive clustering trees (PCTs). PCTs generalize decision trees and can be used for prediction and clustering, two of the most common data mining tasks. Regular PCT induction builds PCTs top-down, using a greedy algorithm, similar to that of C4.5. We propose a new induction algorithm ...
متن کاملClustering Web Search Results with Maximum Spanning Trees
We present a novel method for clustering Web search results based on Word Sense Induction. First, we acquire the meanings of a query by means of a graph-based clustering algorithm that calculates the maximum spanning tree of the co-occurrence graph of the query. Then we cluster the search results based on their semantic similarity to the induced word senses. We show that our approach improves c...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملA novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کامل