Estimating Meme Fitness in Adaptive Memetic Algorithms for Combinatorial Problems

نویسنده

  • J. E. Smith
چکیده

Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A self-adaptive Multimeme Memetic Algorithm co-evolving utility scores to control genetic operators and their parameter settings

Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given gl...

متن کامل

The Design of Memetic Algorithms for Scheduling and Timetabling Problems

There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. There is a considerable number of memetic algorithms that have been proposed in the l...

متن کامل

Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization

Combinatorial optimization problems (COPs) arise in many practical applications in the fields of management science, biology, chemistry, physics, engineering, and computer science. Although the search space is comprised of a finite number of candidate solutions, many of these problems are very complex and thus hard to solve. Often, the search space grows exponentially with the problem size rend...

متن کامل

Competent Memetic Algorithms: Model, Taxonomy and Dessing Issues

Evolutionary algorithms combined with local search were named “Memetic Algorithms” (MAs) in [1]. These methods are inspired by models of adaptation in natural systems that combine evolutionary adaptation of populations of individuals with individual learning within a lifetime. Additionally, MAs are inspired by Richard Dawkins concept of a meme, which represents a unit of cultural evolution that...

متن کامل

A Guided Memetic Algorithm with Probabilistic Models

Due to the combinatorial explosions in solution space for scheduling problems, the balance between genetic search and local search is an important issue when designing a memetic algorithm [23] for scheduling problems. The main motivation of this research is to resolve the combinatorial explosion problem by reducing the possible neighborhood combinations using guided operations to remove these i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolutionary computation

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2012