Optimal Network Alignment with Graphlet Degree Vectors
نویسندگان
چکیده
Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.
منابع مشابه
Proper evaluation of alignment-free network comparison methods
MOTIVATION Network comparison is a computationally intractable problem with important applications in systems biology and other domains. A key challenge is to properly quantify similarity between wiring patterns of two networks in an alignment-free fashion. Also, alignment-based methods exist that aim to identify an actual node mapping between networks and as such serve a different purpose. Var...
متن کاملGraphlet characteristics in directed networks
Graphlet analysis is part of network theory that does not depend on the choice of the network null model and can provide comprehensive description of the local network structure. Here, we propose a novel method for graphlet-based analysis of directed networks by computing first the signature vector for every vertex in the network and then the graphlet correlation matrix of the network. This ana...
متن کاملSupplementary Material: C–GRAAL: Common–Neighbors–Based Global GRAph ALignment of Biological Networks†
To determine topological similarity between two nodes in different networks, we use the similarity measure of nodes’ local neighborhoods, as described by Milenković and Pržulj1. This measure generalizes the degree of a node, which counts the number of edges that the node touches, into the vector of graphlet degrees, that counts the number of graphlets that the node touches, for all 2-5-node gra...
متن کاملGraphlet-based measures are suitable for biological network comparison
MOTIVATION Large amounts of biological network data exist for many species. Analogous to sequence comparison, network comparison aims to provide biological insight. Graphlet-based methods are proving to be useful in this respect. Recently some doubt has arisen concerning the applicability of graphlet-based measures to low edge density networks-in particular that the methods are 'unstable'-and f...
متن کاملComputing graphlet signatures of network nodes and motifs in Cytoscape with GraphletCounter
UNLABELLED Biological network analysis can be enhanced by examining the connections between nodes and the rest of the network. For this purpose we have developed GraphletCounter, an open-source software tool for computing graphlet degree signatures that can operate on its own or as a plug-in to the network analysis environment Cytoscape. A unique characteristic of GraphletCounter is its ability...
متن کامل