Strong shape of the Stone-Čech compactification

نویسنده

  • Sibe Mardešić
چکیده

J. Keesling has shown that for connected spaces X the natural inclusion e : X → βX of X in its Stone-Čech compactification is a shape equivalence if and only if X is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On matrix points in Čech–Stone compactifications of discrete spaces

We prove the existence of (2 , τ)-matrix points among uniform and regular points of Čech–Stone compactification of uncountable discrete spaces and discuss some properties of these points.

متن کامل

Algebra and Topology in the Stone-Čech Compactification

The Stone-Čech compactification of discrete semigroups is a tool of central importance in several areas of mathematics, and has been studied extensively. We think of the Stone-Čech compactification of a discrete abelian semigroup G as the set βG of ultrafilters on G, where the point x ∈ G is identified with the principal ultrafilter {A ⊆ G ∣∣x ∈ A}, and the basic open sets are those of the form...

متن کامل

Degenerate Fibres in the Stone-čech Compactification of the Universal Bundle of a Finite Group

Applied to a continuous surjection π : E → B of completely regular Hausdorff spaces E and B, the Stone-Čech compactification functor β yields a surjection βπ : βE → βB. For an n-fold covering map π, we show that the fibres of βπ, while never containing more than n points, may degenerate to sets of cardinality properly dividing n. In the special case of the universal bundle π : EG → BG of a p-gr...

متن کامل

ON SOFT ULTRAFILTERS

In this paper, the concept of soft ultrafilters is introduced and some of the related structures such as soft Stone-Cech compactification, principal soft ultrafilters and basis for its topology are studied.

متن کامل

The Stone-Čech compactification of Tychonoff spaces

A topological space X is said to be completely regular if whenever F is a nonempty closed set and x ∈ X \F , there is a continuous function f : X → [0, 1] such that f(x) = 0 and f(F ) = {1}. A completely regular space need not be Hausdorff. For example, ifX is any set with more than one point, then the trivial topology, in which the only closed sets are ∅ and X, is vacuously completely regular,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010