Inverse Spectral and Scattering Theory for the Half-Line Left-Definite Sturm-Liouville Problem

نویسندگان

  • C. Bennewitz
  • B. M. Brown
  • R. Weikard
چکیده

together with appropriate boundary conditions, in the space Lw of functions square integrable with respect to the weight w, i.e., the normsquare of the space is ‖u‖2 = ∫ |u|2w. A basic assumption for this to be possible is that w ≥ 0. In some situations of interest this is not the case, but instead one has p > 0, q ≥ 0. One may then use as a norm-square the integral ∫ (p|u′|2 + q|u|2), and a problem of this type is usually called left definite. A left definite problem of current interest is the spectral problem associated with the Camassa-Holm equation, which is of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

Direct and inverse spectral theory of singular left-definite Sturm–Liouville operators

We discuss direct and inverse spectral theory of self-adjoint Sturm– Liouville relations with separated boundary conditions in the left-definite setting. In particular, we develop singular Weyl–Titchmarsh theory for these relations. Consequently, we apply de Branges’ subspace ordering theorem to obtain inverse uniqueness results for the associated spectral measure. The results can be applied to...

متن کامل

On‎ ‎inverse problem for singular Sturm-Liouville operator with‎ ‎discontinuity conditions

‎In this study‎, ‎properties of spectral characteristic are investigated for‎ ‎singular Sturm-Liouville operators in the case where an eigen‎ ‎parameter not only appears in the differential equation but is‎ ‎also linearly contained in the jump conditions‎. ‎Also Weyl function‎ ‎for considering operator has been defined and the theorems which‎ ‎related to uniqueness of solution of inverse proble...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

An inverse problem for the non-selfadjoint matrix Sturm–Liouville equation on the half-line

An inverse spectral problem is studied for the non-selfadjoint matrix Sturm–Liouville differential equation on the half-line. We give a formulation of the inverse problem, prove the corresponding uniqueness theorem and provide a constructive procedure for the solution of the inverse problem by the method of spectral mappings. The obtained results are natural generalizations of the classical res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2008