On the dominant of the s-t-cut polytope: Vertices, facets, and adjacency
نویسندگان
چکیده
The natural linear programming formulation of the maximum s-t-flow problem in path variables has a dual linear program whose underlying polyhedron is the dominant P↑ s-t-cut of the s-t-cut polytope. We present a complete characterization of P↑ s-t-cut with respect to vertices, facets, and adjacency.
منابع مشابه
On the dominant of the s-t-cut polytope
The natural linear programming formulation of the maximum s-t-flow problem in path variables has a dual linear program whose underlying polyhedron is the dominant P↑ s-t-cut of the s-t-cut polytope. We present a complete characterization of P↑ s-t-cut with respect to vertices, facets, and adjacency.
متن کاملOn Skeletons, Diameters and Volumes of Metric Polyhedra
Abst rac t . We survey and present new geometric and combinatorial propertiez of some polyhedra with application in combinatorial optimization, for example, the max-cut and multicommodity flow problems. Namely we consider the volume, symmetry group, facets, vertices, face lattice, diameter, adjacency and incidence relm :ons and connectivity of the metric polytope and its relatives. In partic~da...
متن کاملOn Skeletons , Diameters and Volumesof Metric PolyhedraAntoine DEZA
We survey and present new geometric and combinatorial properties of some polyhedra with application in combinatorial optimization, for example, the max-cut and multicommodity ow problems. Namely we consider the volume, symmetry group, facets, vertices, face lattice, diameter, adjacency and incidence relations and connectivity of the metric polytope and its relatives. In particular, using its la...
متن کاملLogical s-t Min-Cut Problem: An Extension to the Classic s-t Min-Cut Problem
Let $G$ be a weighted digraph, $s$ and $t$ be two vertices of $G$, and $t$ is reachable from $s$. The logical $s$-$t$ min-cut (LSTMC) problem states how $t$ can be made unreachable from $s$ by removal of some edges of $G$ where (a) the sum of weights of the removed edges is minimum and (b) all outgoing edges of any vertex of $G$ cannot be removed together. If we ignore the second constraint, ca...
متن کاملComplementary Vertices and Adjacency Testing in Polytopes
Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has a second such pair. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form {x ∈ R |Ax = b and x ≥ 0} and a list of its V vertices, we describe an O(n) test to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 124 شماره
صفحات -
تاریخ انتشار 2010