Enumeration of M-partitions
نویسنده
چکیده
An M-partition of a positive integer m is a partition of m with as few parts as possible such that every positive integer less than m can be written as a sum of parts taken from the partition. This type of partition is a variation of MacMahon’s perfect partition, and was recently introduced and studied by O’Shea, who showed that for half the numbers m, the number of M-partitions of m is equal to the number of binary partitions of 2n+1 − 1 −m, where n = blog2 mc. In this note we extend O’Shea’s result to cover all numbers m.
منابع مشابه
1 6 M ay 2 00 8 Schröder Paths and Pattern Avoiding Partitions
In this paper, we introduce labelling schemes for certain Schröder paths. The two labelling schemes provide bijections between Schröder paths without up steps followed immediately by horizontal steps and τ-avoiding partitions, where τ ∈ {12312, 12321}, and it is exciting to see that some partition statistics can be translated to statistics of the corresponding Schröder paths. As a consequence, ...
متن کاملSchröder Paths and Pattern Avoiding Partitions Sherry
In this paper, we show that both 12312-avoiding partitions and 12321-avoiding partitions of the set [n + 1] are in one-to-one correspondence with Schröder paths of semilength n without peaks at even level. As a consequence, the refined enumeration of 12312-avoiding (resp. 12321-avoiding) partitions according to the number of blocks can be reduced to the enumeration of certain Schröder paths acc...
متن کامل(-1)-Enumeration of Self-Complementary Plane Partitions
Abstract. We prove a product formula for the remaining cases of the weighted enumeration of self–complementary plane partitions contained in a given box where adding one half of an orbit of cubes and removing the other half of the orbit changes the sign of the weight. We use nonintersecting lattice path families to express this enumeration as a Pfaffian which can be expressed in terms of the kn...
متن کاملEnumeration of Partitions by Long Rises, Levels, and Descents
When the partitions of [n] = {1, 2, . . . , n} are identified with the restricted growth functions on [n], under a known bijection, certain enumeration problems for classical word statistics are formulated for set partitions. In this paper we undertake the enumeration of partitions of [n] with respect to the number of occurrences of rises, levels and descents, of arbitrary integral length not e...
متن کامل(−1)–enumeration of Plane Partitions with Complementation Symmetry
We compute the weighted enumeration of plane partitions contained in a given box with complementation symmetry where adding one half of an orbit of cubes and removing the other half of the orbit changes the weight by −1 as proposed by Kuperberg in [7, pp.25/26]. We use nonintersecting lattice path families to accomplish this for transpose–complementary, cyclically symmetric transpose–complement...
متن کاملEnumeration of bilaterally symmetric 3-noncrossing partitions
Schützenberger’s theorem for the ordinary RSK correspondence naturally extends to Chen et. al’s correspondence for matchings and partitions. Thus the counting of bilaterally symmetric k-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for 3-noncrossing partitions, we use a different technique to develop a MAPLE package for 2-dimensional v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006