Systematic implicit solvent coarse graining of dimyristoylphosphatidylcholine lipids
نویسندگان
چکیده
We have used systematic structure-based coarse graining to derive effective site-site potentials for a 10-site coarse-grained dimyristoylphosphatidylcholine (DMPC) lipid model and investigated their state point dependence. The potentials provide for the coarse-grained model the same site-site radial distribution functions, bond and angle distributions as those computed in atomistic simulations carried out at four different lipid-water molar ratios. It was shown that there is a non-negligible dependence of the effective potentials on the concentration at which they were generated, which is also manifested in the properties of the lipid bilayers simulated using these potentials. Thus, effective potentials computed at low lipid concentration favor to more condensed and ordered structure of the bilayer with lower average area per lipid, while potentials obtained at higher lipid concentrations provide more fluid-like structure. The best agreement with the reference data and experiment was achieved using the set of potentials derived from atomistic simulations at 1:30 lipid:water molar ratio providing fully saturated hydration of DMPC lipids. Despite theoretical limitations of pairwise coarse-grained potentials expressed in their state point dependence, all the resulting potentials provide a stable bilayer structure with correct partitioning of different lipid groups across the bilayer as well as acceptable values of the average lipid area, compressibility and orientational ordering. In addition to bilayer simulations, the model has proven its robustness in modeling of self-aggregation of lipids from randomly dispersed solution to ordered bilayer structures, bicelles, and vesicles.
منابع مشابه
Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field.
We study the lipid and phase transferability of our recently developed systematically coarse-grained solvent-free membrane model. The force field was explicitly parameterized to describe a fluid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer at 310 K with correct structure and area per lipid, while gaining at least three orders of magnitude in computational efficiency (see Wang and Des...
متن کاملCoarse-grained, density dependent implicit solvent model reliably reproduces behavior of a model surfactant system.
Density dependent, implicit solvent (DDIS) potentials, the generation of which has been described previously [E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008); E. C. Allen and G. C. Rutledge, J. Chem. Phys. 130, 034904 (2009)], are used in this work to examine the self-assembly of a model surfactant system. While the measurement of thermodynamic properties in simulations of sol...
متن کاملReintroducing explicit solvent to a solvent-free coarse-grained model.
A unique coarse-grained modeling scheme that combines a systematic, solvent-free multiscale coarse-graining algorithm for a complex macromolecule with an existing coarse-grained solvent model is proposed. We show that this procedure efficiently and reliably describes the interactions for complex macromolecules, using the specific example of dendrimers binding phenanthrenes in water. The experim...
متن کاملDynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat.
We introduce a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models of lipid bilayer membranes. We show our fluctuating hydrodynamics approach captures interesting correlations in the dynamics of lipid bilayer membranes that are missing in simulations performed using standard Langevin dynamics. Our momentum conserving thermostat account...
متن کاملEvaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains.
Previously, we described a coarse-graining method for creating local density-dependent implicit solvent (DDIS) potentials that reproduce the radial distribution function (RDF) and solute excess chemical potential across a range of particle concentrations [E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008)]. In this work, we test the transferability of these potentials, derived fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 35 16 شماره
صفحات -
تاریخ انتشار 2014