Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage.
نویسندگان
چکیده
Preliminary findings indicate that PprI is a regulatory protein that stimulates transcription and translation of recA and other DNA repair genes in response to DNA damage in the extremely radioresistant bacterium Deinococcus radiodurans. To define the repertoire of proteins regulated by PprI and investigate the in vivo regulatory mechanism of PprI in response to gamma radiation, we performed comparative proteomics analyses on wild type (R1) and a pprI knock-out strain (YR1) under conditions of ionizing irradiation. Results of two-dimensional electrophoresis and MALDI-TOF MS or MALDI-TOF/TOF MS indicated that in response to low dose gamma ray exposure 31 proteins were significantly up-regulated in the presence of PprI. Among them, RecA and PprA are well known for their roles in DNA replication and repair. Others are involved in six different pathways, including stress response, energy metabolism, transcriptional regulation, signal transduction, protein turnover, and chaperoning. The last group consists of many proteins with uncharacterized functions. Expression of an additional four proteins, most of which act in metabolic pathways, was down-regulated in irradiated R1. Additionally phosphorylation of two proteins was under the control of PprI in response to irradiation. The different functional roles of representative PprI-regulated genes in extreme radioresistance were validated by gene knock-out analysis. These results suggest a role, either directly or indirectly, for PprI as a general switch to efficiently enhance the DNA repair capability and extreme radioresistance of D. radiodurans via regulation of a series of pathways.
منابع مشابه
Protease Activity of PprI Facilitates DNA Damage Response: Mn(2+)-Dependence and Substrate Sequence-Specificity of the Proteolytic Reaction
The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory...
متن کاملDeinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes
PprI accelerates radiation-induced DNA damage repair via regulating the expression of DNA repair genes and enhances antioxidative enzyme activity in Deinococcus radiodurans after radiation. The main aim of our study was to determine whether the expression of pprI gene could fulfil its DNA repair function in eukaryotes and enhance the radioresistance of eukaryotic organism or not. In this study,...
متن کاملA model of interactions between radiation-induced oxidative stress, protein and DNA damage in Deinococcus radiodurans.
Ionizing radiation triggers oxidative stress, which can have a variety of subtle and profound biological effects. Here we focus on mathematical modeling of potential synergistic interactions between radiation damage to DNA and oxidative stress-induced damage to proteins involved in DNA repair/replication. When sensitive sites on these proteins are attacked by radiation-induced radicals, correct...
متن کاملThe effects of pprI gene of Deinococcus radiodurans R1 on acute radiation injury of mice exposed to 60Co γ-ray radiation
The role of the pprI gene from Deinococcus radiodurans R1 in therapy of acute radiation injury of a mammalian host was investigated. We injected a plasmid containing the pprI gene into the muscle of mice exposed to total 6Gy of 60Co γ-ray radiation. After injection, we used in vivo gene electroporation technology to transfer the pprI gene into the cell. We found the PprI protein was expressed s...
متن کاملBiology of extreme radiation resistance: the way of Deinococcus radiodurans.
The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage. A well-protected functional proteome ensures cell recovery from extensive radiation damage to other cellular constituents by molecular repair and turnover processes, including an efficient repair of disintegrated DNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2009