Dynamical systems method for solving linear ill-posed problems

نویسنده

  • A. G. Ramm
چکیده

Various versions of the Dynamical Systems Method (DSM) are proposed for solving linear ill-posed problems with bounded and unbounded operators. Convergence of the proposed methods is proved. Some new results concerning discrepancy principle for choosing regularization parameter are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamical Tikhonov Regularization for Solving Ill-posed Linear Algebraic Systems

The Tikhonov method is a famous technique for regularizing ill-posed linear problems, wherein a regularization parameter needs to be determined. This article, based on an invariant-manifold method, presents an adaptive Tikhonov method to solve ill-posed linear algebraic problems. The new method consists in building a numerical minimizing vector sequence that remains on an invariant manifold, an...

متن کامل

Dynamical systems method for solving ill-conditioned linear algebraic systems

A new method, the Dynamical Systems Method (DSM), justified recently, is applied to solving ill-conditioned linear algebraic system (ICLAS). The DSM gives a new approach to solving a wide class of ill-posed problems. In this paper a new iterative scheme for solving ICLAS is proposed. This iterative scheme is based on the DSM solution. An a posteriori stopping rules for the proposed method is ju...

متن کامل

Arxiv:math-ph/0008011v3 17 Nov 2000 Linear Ill-posed Problems and Dynamical Systems * †

A new approach to solving linear ill-posed problems is proposed. The approach consists of solving a Cauchy problem for a linear operator equation and proving that this problem has a global solution whose limit at infinity solves the original linear equation.

متن کامل

Linear ill - posed problems and dynamical systems ∗ †

A new approach to solving linear ill-posed problems is proposed. The approach consists of solving a Cauchy problem for a linear operator equation and proving that this problem has a global solution whose limit at infinity solves the original linear equation.

متن کامل

Dynamical Systems Method ( Dsm ) and Nonlinear Problems

The dynamical systems method (DSM), for solving operator equations, especially nonlinear and ill-posed, is developed in this paper. Consider an operator equation F (u) = 0 in a Hilbert space H and assume that this equation is solvable. Let us call the problem of solving this equation illposed if the operator F ′(u) is not boundedly invertible, and well-posed otherwise. The DSM for solving linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008